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New Methods for Generating Short Addition Chains
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SUMMARY Power exponentiation is an important opera-
tion in modern cryptography. This operation can be efficiently
calculated using the concept of the addition chain. In this paper,
two new systematic methods, a Run-length method and a Hybrid
method, are proposed to generate a short addition chain. The
performance of these two methods are theoretically analyzed and
it is shown that the Hybrid method is more efficient and practi-
cal than known methods. The proposed methods can reduce the
addition chain length by 8%, in the best case, compared to the
Window method.
key words: addition chain, hamming weight, extended window
method, run-length method, hybrid method

1. Introduction

The encryption and decryption in the RSA scheme [9]
consist of the power exponentiation: M e mod n. This
operation is very important and is also used in prime
testing algorithms, integer factoring algorithms, and so
on. Fast calculation of this operation is realized by re-
ducing the number of multiplications as much as possi-
ble and/or speeding up the operation of multiplication.
In this paper, we consider the former problem, i.e., how
to reduce the number of multiplications.

It is well known that the power exponentiation
can be efficiently calculated using the addition chain [3].
Suppose that M e can be calculated as M1 → Ma1 →
Ma2 → · · · → Mar (= M e) based on a rule:

Mai = Maj × Mak , j, k < i. (1)

The sequence of exponents ai, 〈a0 (= 1), a1, a2, · · · , ar

(= e)〉, is called an addition chain since this sequence
satisfies the relation

ai = aj + ak, j, k < i. (2)

Note that the chain length r is equal to the number of
multiplications used to calculate M e.

Finding a short addition chain for a given e leads
to the fast calculation of the power exponentiation
and, hence, fast encryption and decryption in the
RSA scheme. However, obtaining the shortest chain is
an NP-hard problem [2]. Therefore, many algorithms
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have been proposed to obtain a sub-optimal chain,
for example, the Bos-Coster method [1], the Yacobi
method [11], the m-ary or 2κ-ary method [3], the Lou-
Chang method [7], the Window method [3], and the
Extended Window method with the Tunstall-like al-
gorithm [6], etc. In [6], we showed that the Window
method is optimal under the following two conditions.
One is that a power exponent e is uniformly randomly
distributed, and the other is that only the doubling rule
ai = 2ai−1 and the star chain rule ai = ai−1+ak, k < i,
are allowed in Eq. (2).

However, non-uniform cases have not been ana-
lyzed in details. In this paper, we mainly treat non-
uniform cases. In order to derive a short addition
chain, we propose two methods, a Run-length method∗

and a Hybrid method, which are different from the
known methods. We theoretically show that the Hy-
brid method is as efficient as the Extended Window
method, which is optimal even for non-uniform cases
under the above second condition, and the Run-length
method is efficient when the Hamming weight of the
binary representation of the power exponent e is large.
It is also shown that the performance of the Hybrid
method is better than the other known methods.

The Hybrid method and Run-length method are
also applicable to elliptic curve cryptosystems [4], [8].
However, the scalar multiplication over elliptic curves
can use an addition-subtraction chain instead of an
addition chain since an inverse element can be eas-
ily obtained. The computation rule of the addition-
subtraction chain is given by ai = aj ± ak, j, k < i
instead of Eq. (2). An efficient method for obtaining a
short addition-subtraction chain based on the canonical
signed binary representation of e is described in [6].

In this paper, the base of logarithm is always 2. Let
Seq = s1s2 · · · sL, sl ∈ {0, 1}, be the ordinary binary
representation of a positive integer e, and (Seq)10 =
e. |Seq| stands for the length of Seq, i.e., L, which
is equal to �log e� + 1. w(e) represents the Hamming
weight of e, in other words, w(e) is the number of “1”
in Seq = s1s2 · · · sL, i.e., w(e) =

∑L
i=1 si. We assume

that the bits “0” and “1” occur with the probability of
p and q, respectively, i.e., q = Pr{sl = 1} = w(e)/L
and p = Pr{sl = 0} = 1− q. The addition chain length
r must satisfy r ≥ L+ log(qL)− 2.13 for any e [10].

∗Run-length method is firstly proposed in [5].
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2. Window Methods

In this section, we briefly review theWindowmethod [3]
and the Extended Window method with the Tunstall-
like algorithm [6].

2.1 Window Method

The addition of the Window method is restricted by
the following two rules†:

doubling rule: bi = bi−1 + bi−1 = 2bi−1, (3)
star chain rule: bi = bi−1 + ak, ak ∈ D, (4)

where D is a set of all odd integers less than 2κ. Here-
after, we call D as “dictionary.” Note that the oper-
ations based on the doubling rule bi = 2bi−1 and star
chain rule bi = bi−1+ak correspond to M bi = (M bi−1)2

and M bi = M bi−1 ·Mak in the power exponents, respec-
tively.

The Window method is formulated as follows.

Input an integer e (or the binary representation of e,
Seq).

Output an addition chain for e, 〈c0 (= 1), c1, · · · ,
cr = e〉.

Step 1 Determine the window size κ appropriately
from L and w(e).

Step 2 Make the shortest addition chain for the dic-
tionary D. In this case, it is given by 〈1, 2, 3,
5, · · · , 2κ − 1〉, where the underline represents the
number not included in the dictionary.

Step 3 [Main Procedure]
Process the sequence Seq from the most significant
bit in the following two phases.

Phase 1 Read κbits from Seq. Let the κbits be
1s1 · · · sκ−l−1 0 · · · 0︸ ︷︷ ︸

l

, where sκ−l−1 = 1 and

(1s1 · · · sκ−l−1)10 = a. First apply the dou-
bling rule bi = 2bi−1, κ− l times. Next, apply
the star chain rule bi = bi−1 + a and finally
apply the doubling rule l times. Remove the
κbits from Seq.

Phase 2 If Seq = 0 · · · 0︸ ︷︷ ︸
l0

1 · · ·, then apply the dou-

bling rule bi = 2bi−1, l0 times. Remove the
l0 bits from Seq and return to Phase 1.

Step 4 Concatenate 〈1, 2, 3, 5, · · · , 2κ−1〉 in Step 2 and
{bi} in Phases 1 and 2 of Step 3 to obtain the whole
addition chain 〈c0, c1, . . . , cr〉.

Note 1: After applying the doubling rule or the star
chain rule, the index i is increased one. All methods
described in Sects. 2 and 3 obey this rule.

Note 2: The sequence is parsed by κ bits in Phase 1
of Step 3, but the parse length in Phase 2 depends on
the sequence.

Note 3: When κ = 1, the above method is equivalent
to the binary method [3].

Note 4: The average chain length is given as fol-
lows [6].(

L −
(

κ − p − pκ

1− p

))
+

L

κ+ p
1−p

+ 2κ−1, (5)

where the first and second terms are the average num-
bers of the applied doubling and star chain rules in
Step 3, respectively. The third term is the chain length
for the dictionary D in Step 2. When L = 512 and
p = 1/2, the optimal window size κ is equal to 5 and
the average chain length is 609.

Note 5: The 2κ-ary method [3] is similar to the Win-
dow method. This method can be easily implemented,
but it is less efficient than the Window method. For in-
stance, the chain length obtained by the 2κ-ary method
is L−κ+L/κ+2κ, which becomes 640 for κ = 5 in the
above case. The average chain length obtained by its
variant, the Lou-Chang method [7], is 613 in the same
case.

2.2 Extended Window Method with Tunstall-Like
Algorithm

As we have seen in the previous subsection, the set of
all odd positive integers less than 2κ is adopted as the
dictionary in the Window method. On the other hand,
a more flexible dictionary can be used in the Extended
Window Method (EWM) proposed in [6]. Moreover,
the “Tunstall-like algorithm” was introduced to make
the optimal dictionary in the same paper. In this sub-
section, we review the EWM and the Tunstall-like al-
gorithm.

The EWM is formulated as follows.

Input an integer e (or the binary representation of e,
Seq).

Output an addition chain for e, 〈c0 (= 1), c1, · · · ,
cr = e〉.

Step 1 Determine the primitive dictionary†† Ds =
{Seq0, Seq1, · · ·SeqK} appropriately from L and
w(e) and obtain the dictionary D = {a0

(= 1), a1, . . . , aK} = {(Seq′j)10}K
j=0, where Seq′j is

the sequence obtained by removing trailing zeros,
in Seqj, ending at the least significant bit posi-
tion†††.

Step 2 Make the shortest addition chain for D.
†All methods described in Sects. 2 and 3 use these two

rules. However, only the concatenation point of the addition
chains obtained by Steps 2 and 3 described later can break
this rule in all methods.

††The most significant bit of each Seqj is “1.”
†††If Seqj = 1s1s2 · · · sl0 · · · 0, then Seq′

j = 1s1s2 · · · sl.
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Step 3 [Main Procedure]
Process the sequence Seq from the most significant
bit in the following two phases.
Phase 1

(a) Find Seqj that is equal to the prefix of Seq.
(b) Apply the doubling rule bi = 2bi−1, |Seq′j |

times.
(c) Apply the star chain rule bi = bi−1 + aj .
(d) Again apply the doubling rule |Seqj| − |Seq′j |

times.
(e) Remove the prefix of Seq.

Phase 2

(f) If the prefix of Seq is 0 · · · 0︸ ︷︷ ︸
l0

1, then apply the

doubling rule bi = 2bi−1, l0 times.
(g) Remove the prefix 0 · · · 0︸ ︷︷ ︸

l0

from Seq and return

to Phase 1.

Step 4 Concatenate the addition chains obtained in
Steps 2 and 3.

Note 6: The primitive dictionary Ds is a set such
that Ds and 0∗, zero sequences with arbitrary length,
uniquely parse any Seq.

Note 7: In Step 2, it is possible to make the shortest
addition chain for D unless K is very large. But it
becomes harder as K becomes larger.

Note 8: In general, finding Seqj in Phase 1 (a) of
Step 3 is executed by using a tree obtained from the
primitive dictionary determined in Step 1, and the op-
timal primitive dictionary is obtained by the Tunstall-
like algorithm described later. Hence, the implement of
the EWM is a little complicated than other methods,
which can be implemented without a tree structure,
such as the Window method, the Run-length method
(described in Sect. 3.1) and the Hybrid method (de-
scribed in Sect. 3.3).

Note 9: At the first parsing of Seq, (b) of Phase 1
can be skipped.

The optimal primitive dictionary Ds is constructed
as follows.

Tunstall-like algorithm [6]

Input a dictionary size K, bit length of e (i.e. L), and
the Hamming weight of e (i.e. w(e)).

Output a primitive dictionary Ds.
Step 1 Make the root of a tree with weight 1. Set

q = w(e)/L and p = 1− q.
Step 2 While the number of leaves is less than K +1,

repeat the following.
Let l and weight(l) be the leaf with largest weight
and its weight, respectively. Create two children
with weight p × weight(l) and q × weight(l), and

connect them to l via edges labeled with “0” and
“1,” respectively.

Step 3 Get binary sequences by reading along all
paths from the root to all leaves. Then each
element of Ds is obtained by concatenating “1”
toeach sequence as the most significant bit.

Note that the optimal dictionary depends on the Ham-
ming weight.

In [6], the Tunstall-like algorithm is derived from
the duality between the minimization problem of the
chain length in the EWM and the optimization prob-
lem of variable-to-fixed length codes in data compres-
sion theory. We showed in [6] that the EWM re-
duces to the Window method when p = 0.5. Fur-
thermore, it is also proved that the average chain
length asymptotically converges L + H(p) L

log L , where
H(p) ≡ −p log p − (1 − p) log(1 − p). This result and
Eq. (5) imply that in case of p < 0.5, the addition chains
of the EWM and the Window method become shorter
and longer, respectively, as the Hamming weight be-
comes larger. Hence, the Window method is not al-
ways optimal, especially when e has a large Hamming
weight. In the next section, we propose two new algo-
rithms that can be more easily implemented than the
EWM. In addition, the two methods are as efficient as
the EWM in the case of a large Hamming weight, i.e.,
small p.

3. New Methods

In this section, we propose the Run-length method and
the Hybrid method. The former can make a shorter
addition chain than the Window method when p is very
small.The latter is a hybrid of the Window method and
the Run-length method.

3.1 Run-Length Method

First, consider a case with small p. The optimal primi-
tive dictionary obtained by the Tunstall-like algorithm,
for example when K = 512 and p = 0.1, becomes

Ds = {10, 110, 1110, · · · , 1 · · · 1︸ ︷︷ ︸
13

0, 1 · · · 1︸ ︷︷ ︸
14

}.

If the aboveDs is adopted, the rule of parsing in Phase 1
can be described as follows.

Read Seq until bit “0” appears or the run-
length of bit “1” becomes t, where t is the
maximal run-length of “1.”

The above example corresponds to the case of t = 14.
The EWM with the above primitive dictionary

Ds = {10, 110, · · · , 1 · · · 1︸ ︷︷ ︸
t−1

0, 1 · · ·1︸ ︷︷ ︸
t

}, which gives the dic-

tionary D = {2i − 1}t
i=1, can be simplified as follows.

The “Run-length method” is named from its similar-
ity to the “Run-length method” in data compression
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theory.

Run-length method

Input and Output are the same as the EWM.
Step 1 Determine the maximal run-length t appropri-

ately from L and w(e).
Step 2 Make the shortest addition chain forD = {2i−

1}t
i=1. In this case, it is given by 〈1, 2, 3, · · · , 2i −

1, 2i+1 − 2, 2i+1 − 1, · · · , 2t − 2, 2t − 1〉. Note that
the underlines represent the numbers not included
in D. Simply speaking, the shortest chain for D is
obtained by repeating, t − 1 times, the operations
of doubling and adding 1.

Step 3 [Main Procedure]

Phase 1 Read Seq until bit “0” appears or the
run-length of “1” becomes t. Let l be the
run-length of “1.” First apply the doubling
rule l times. Next, apply the star chain rule
bi = bi−1 + (2l − 1). Remove the l bits from
the prefix of Seq.

Phase 2 Read Seq until bit “1” appears. Let l0
be the run-length of “0.” Apply the doubling
rule l0 times. Remove the l0 bits from the
prefix of Seq and return to Phase 1.

Step 4 Concatenate the addition chains obtained in
Steps 2 and 3.

As a simple example, we treat the case of e =
445 and Seq = 110111101. In Step 1, we set t =
3. In Step 2, the addition chain 〈1, 2, 3, 6, 7〉 is ob-
tained for D = {1 (= 21 − 1), 3 (= 22 − 1), 7 (=
23 − 1)}. In Step 3, the binary sequence Seq is
parsed as follows. 11/0//111//1/0//1//, where “/”
means the parsing of Phase 1 and “//” stands for
the end of Phase 2. These parsed sequences lead to
the addition chain, 〈3, 6, 12, 24, 48,(+7) 55, 110,(+1) 111,
222, 444,(+1) 445〉, where “,” and “,(+a)” mean that the
doubling and star chain rules are applied, respectively.
Hence, the final addition chain for 445 becomes

〈1, 2, 3, 6, 7, 12, 24, 48, 55, 110, 111, 222, 444, 445〉
in Step 4, and the addition chain length is 13. Hence,
x445 can be calculated by 13 multiplications if we use
the Run-length method with t = 3.

3.2 Average Chain Length of the Run-Length Method

In this subsection, we evaluate the average chain length
attained by the Run-length method. We showed in [6]
that the average chain length obtained by the “EWM”
is given by(

L −
K∑

i=0

|Seq′i|Pi

)
+

L∑K
i=0 |Seqi|Pi + p

1−p

+ (chain length for D), (6)

where Pi is the probability of Seqi in Phase 1 of Step 3.
The first and second terms are the average numbers of
the doubling and star chain rules applied in Step 3,
respectively. The third term is the chain length for the
dictionary D in Step 2.

By letting K = t − 1, Seqi = 1 · · · 1︸ ︷︷ ︸
i+1

0, Pi = p ·

qi (0 ≤ i < t − 1), Seqt−1 = 1 · · · 1︸ ︷︷ ︸
t

, Pt−1 = qt−1,

and the third term = 2(t − 1), we obtain the following
theorem.

Theorem 1: The average chain length for a positive
integer e obtained by the Run-length method is given
as (

L − 1− qt

p

)
+

L
1−qt−1

p + 1
q

+ 2(t − 1), (7)

where L = �log e� + 1, q = w(e)/L, p = 1 − q, and t is
a parameter to be optimized.

When L = 512, p = 0.1, and t = 14, the above
value becomes 590.0 while the chain length obtained
by the Window method (κ = 6) is 621.9.

3.3 Hybrid Method

The optimal primitive dictionary obtained by the
Tunstall-like algorithm, for instance when L = 512 and
p = 0.15, becomes

Ds = {100, 1010, 1100, 10110, 10111, 11010, 11011,
11100, 11101, 11110, 1 · · ·1︸ ︷︷ ︸

5

0, . . . , 1 · · · 1︸ ︷︷ ︸
14

0, 1 · · · 1︸ ︷︷ ︸
15

}.

(8)

The average chain length attained by the above primi-
tive dictionary is only 602.9 while the chain length ob-
tained by the Window method (κ = 6) is 621.0. How-
ever, the EWM with this primitive dictionary has two
demerits compared with the Window method. One is
Step 3, especially Phase 1 (a), which is more compli-
cated than that in the Window method. The reason is
that the EWM needs to use a tree structure in order
to quickly find Seqj since it is a little cumbersome to
find Seqj from many dictionary sequences. The other
is the difficulty of obtaining the shortest addition chain
for the dictionary in Step 2. In order to remove these
defects, we introduce a simple primitive dictionary D̃s,
which is similar to the above Ds.

D̃s = {1{s1s2 · · · sκ−1}∗, 1 · · · 1︸ ︷︷ ︸
κ

0,

1 · · · 1︸ ︷︷ ︸
κ+1

0, . . . , 1 · · · 1︸ ︷︷ ︸
t−1

0, 1 · · ·1︸ ︷︷ ︸
t

}, (9)

where {s1 · · · sκ−1}∗ are all (2κ−1 − 1) sequences with
length κ − 1 excluding 1 · · · 1︸ ︷︷ ︸

κ−1

.
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Note 10: When κ = 5, t = 15, D̃s of (9) becomes
“similar” to Ds given by (8).

Note 11: The primitive dictionary D̃s and 0∗ can
uniquely parse any sequences.

If D̃s is used instead of Ds, the EWM’s defects de-
scribed above are removed in the following way. Step 3
can be simplified because the parsing rule with D̃s can
be described as follows.

Read κ bits from Seq. If all κ bits are “1,”
read Seq until “0” appears or the run-
length of “1” becomes t− κ and parse Seq
there.

Note that this parsing rule can be easily implemented
without a tree structure.

Furthermore, the shortest optimal addition chain
for the dictionary is easily obtained. Note that the
dictionary D̃ for D̃s is given by

{1, 3, 5, . . . , 2κ − 3, 2κ− 1, 2κ+1− 1, 2κ+2− 1, . . .2t − 1},

or, in short, D̃ = {{2i − 1}2κ−1

i=1 , {2κ+i − 1}t−κ
i=1}.

The optimal addition chain for D̃ is easily ob-
tained as 〈1, 2, 3, 5, . . . , 2κ − 3, 2κ − 1, 2κ+1 − 2, 2κ+1 −
1, . . . , 2t − 2, 2t−1〉, where the underlined numbers are
not included in D̃. This chain length is 2κ−1+2(t−κ).

The above dictionary is equivalent to the dictio-
nary of the Window method when κ = t. Furthermore,
it is equivalent to the dictionary of the Run-length
method when κ = 2. Hence, the following method is
a hybrid of the Window method and the Run-length
method.

Hybrid method

Input and Output are the same as the EWM.
Step 1 Determine the parameters κ and t appropri-

ately from L and w(e).
Step 2 Make the shortest addition chain for D =

{{2i − 1}2κ−1

i=1 , {2κ+i − 1}κ−t
i=1}. In this case, it

is given by 〈1, 2, 3, 5, · · · , 2κ − 3, 2κ − 1, 2κ+1 −
2, · · · , 2t − 2, 2t − 1〉.

Step 3 [Main Procedure]
Phase 1 Read κbits from Seq. If bit “0” is in-
cluded in the κbits, execute (a). Otherwise, exe-
cute (b).

(a) Assume that the κ bits be 1s1 · · · sκ−l−1 0 · · · 0︸ ︷︷ ︸
l

,

where sκ−l−1 = 1 and (1s1 · · · sκ−l−1)10 = a.
Then, apply the doubling rule κ − l times,
the star chain rule bi = bi−1+a once, and the
doubling rule l times in this order. Remove
the κbits from the prefix of Seq.

(b) Read Seq until bit “0” appears or the run-
length of bit “1” becomes t − κ. Let l be
the total run-length of “1.” Then, apply the

doubling rule l times, and the star chain rule
bi = bi−1 + (2l − 1). Remove the l bits from
the prefix of Seq.

Phase 2 Read Seq until bit “1” appears. Let l0 be
the run-length of “0.” Then, apply the doubling
rule l0 times. Remove the l0 bits from the prefix of
Seq and return to Phase 1.

Step 4 Concatenate the addition chains obtained in
Steps 2 and 3.

Note that (a) and (b) correspond to Phase 1
of Step 3 in the Window and Run-length methods,
respectively. As a simple example, consider e =
75064310, Seq = 100011110010110001111110110. In
Step 1, we set κ = 3 and t = 5. In Step 2, the
addition chain 〈1, 2, 3, 5, 7, 14, 15, 30, 31〉 is derived for
D = {1, 3, 5, 7, 15, 31}. In Step 3, Seq is parsed as fol-
lows.

100/0//1111/00//101//100/0//11111//101//10//,

where “/” and “//” are the same as the example treated
in Sect. 3.1. These parsed sequences lead to the follow-
ing chain, 〈1, 2, 4, 8, 16, 32, 64, 128,(+15)143, 286, 572,
1144, 2288, 4576,(+5)4581, 9162,(+1) 9163, 18326, 36652,
73304, 146608, 293216, 586432, 1172864, 2345728,(+31)

2345759, 4691518, 9383036, 18766072,(+5)18766077,
37532154,(+1) 37532155, 75064310 (= e)〉. In Step 4,
the whole addition chain is obtained by concatenating
the chains obtained in Steps 2 and 3. Hence, the total
chain length for e becomes 8 (Step 2) +32 (Step 3) =
40 in this case.

Note 12: When κ = 1 and t = 1, Hybrid method is
equivalent to the binary method.

3.4 Average Chain Length of the Hybrid Method

The average chain length obtained by the Hybrid
method can also be derived from Eq. (6). Let K =
2κ−1+ t− κ− 1. In case of Seqi = 1{s1 · · · sκ−1}∗, 0 ≤
i ≤ 2κ−1−2, where {s1 · · · sκ−1}∗ represents all (2κ−1−
1) sequences excluding 1 · · · 1︸ ︷︷ ︸

κ−1

, Pi in Eq. (6) is given by

Pi = pw1 · qw2 where w1 and w2 are the numbers of “0”
and “1” included in s1 · · · sκ−1, respectively. Further-
more, Pi = p · qi−2κ−1+κ if Seqi = 1 · · · 1︸ ︷︷ ︸

κ···t−1

0, 2κ−1 − 1 ≤

i ≤ 2κ−1 + t − κ − 2 (= K − 1), and PK = qt−1 if
SeqK = 1 · · · 1︸ ︷︷ ︸

t

. Finally, since the third term is equal to

2κ−1 + 2(t − κ), we obtain the following theorem.

Theorem 2: The average chain length for positive in-
teger e obtained by the Hybrid method is given by(

L − (κ − p − pκ

1− p
+

qκ − qt

p
)
)
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Table 1 Performance of four methods.

p w(e) EWM Window Run-length Hybrid
length #D length κ length t length (κ, t)

0.95 25 536.6 1 536.6 1 536.6 1 536.6 (1, 1)
0.90 51 554.2 6 557.4 3 559.5 2 557.4 (3, 3)
0.85 77 567.4 7 571.2 4 579.6 2 571.2 (4, 4)
0.80 102 576.8 10 582.0 4 597.3 3 582.0 (4, 4)
0.75 128 585.2 14 589.1 5 612.2 3 589.1 (5, 5)
0.70 154 591.7 15 594.6 5 625.0 4 594.6 (5, 5)
0.65 179 598.0 21 599.2 5 634.7 4 599.2 (5, 5)
0.60 205 602.8 21 603.1 5 642.5 4 603.1 (5, 5)
0.55 230 606.0 17 606.4 5 647.3 5 606.4 (5, 5)
0.50 256 609.2 17 609.3 5 650.1 5 609.3 (5, 5)
0.45 282 613.1 22 611.8 5 650.2 6 611.8 (5, 5)
0.40 307 613.6 22 614.0 5 648.0 7 613.9 (5, 6)
0.35 333 615.1 21 616.0 5 643.5 8 615.0 (5, 6)
0.30 358 614.3 19 617.7 5 636.8 9 614.9 (5, 7)
0.25 384 611.7 19 619.2 6 628.0 10 613.2 (5, 8)
0.20 410 608.6 22 620.2 6 617.0 11 609.4 (5, 10)
0.15 435 602.9 21 621.1 6 604.4 12 601.2 (4, 12)
0.10 461 590.0 14 621.9 6 590.0 14 589.2 (3, 14)
0.05 486 574.2 17 622.6 6 574.2 17 573.9 (3, 17)

+
L

κ+ qκ−1−qt−1

p + p
1−p

+ 2κ−1 + 2(t − κ), (10)

where L = �log e� + 1, q = w(e)/L, and p = 1 − q. κ
and t are parameters to be optimized.

When L = 512, p = 0.15, κ = 5, and t = 15, the
above value is 605.0. This value is a little larger than
the chain length 602.9, which is attained by the EWM
with the primitive dictionary given by (8). However,
the parsing in the Hybrid method is much easier than
the EWM as described in Sect. 3.3. In addition, the
case of κ = 5 and t = 15 is not optimal for the Hybrid
method. In fact, the optimal parameters are κ = 4 and
t = 12 and the minimum value is 601.2. See Table 1.

Although the optimal parameters (κ, t) must be
chosen in Step 1, they can easily be determined by
evaluating Eq. (10). It is worth noting that Eq. (10) is
equivalent to Eq. (5), which is the average chain length
by the Window method, for κ = t, and Eq. (10) is equal
to Eq. (7), which is the average chain length by the Run-
length method, for κ = 2.

4. Numerical Results

In this section, we show some numerical results for
L = 512. Table 1 and Fig. 1 represent the minimum
values of average addition chain length obtained by
the EWM with the Tunstall-like algorithm, the Win-
dow method, the Run-length method, and the Hybrid
method, which are calculated from Eqs. (6), (5), (7),
and (10), respectively. For each method, the optimal
size of D and parameters κ, t, or (κ, t) that minimize
the theoretical average chain length are used for each
p.

In order to confirm the validity of the above theo-
retical results, we have some simulation results, which

are obtained in the following way. Random sequences
are generated with a given p = Pr{sl = 0} and addition
chains are constructed by the above four methods. The
optimal parameters are searched for each method to at-
tain the minimum value of the average chain length.

These simulation values coincide with Table 1 very
well except that each values are larger than Table 1 by
about 0.4. This difference is caused from the fact that
the last parsing is stopped by the end of a sequence.

From Table 1 and Fig. 1, the compared three meth-
ods have the following properties.

1. The Hybrid method can generate an addition chain
whose length is almost equal to that of the EWM
with the Tunstall-like algorithm for any p.

2. In 0 < p < 0.2, the average chain length obtained
by the Run-length method is almost equal to the
EWM and much smaller than the Windowmethod.

3. In 0.2 ≤ p ≤ 0.4, the Hybrid method can generate
a shorter addition chain than both the Window
method and the Run-length method.

4. In 0.4 < p < 1, the performance of the Hybrid
method is almost equal to the Window method.

Note that when p = 0.45, 0.35, 0.15, 0.10, and
0.05, the Hybrid method generates a shorter chain than
the EWM with the Tunstall-like algorithm. This is
caused from the fact that the EWM includes more extra
numbers in the addition chain for D than the Hybrid
method in the above cases.

Next, we compare the Window method and
the Hybrid method for the case of a large Ham-
ming weight (p = 0.05) and larger exponents (L =
1024, 2048, and 4096). Table 2 shows the average chain
length obtained by these two methods. In all cases, the
Hybrid method can generate a shorter addition chain
than the Window method by 7–8%.
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Fig. 1 Comparison of four methods.

Table 2 Performance of the Window method and the Hybrid
method when p = 0.05.

L Window method Hybrid method Speedup
length κ length (κ, t) (%)

512 622.6 6 573.9 (3, 17) 7.8
1024 1219.2 6 1124.0 (3, 22) 7.8
2048 2395.4 7 2213.7 (3, 30) 7.6
4096 4724.7 8 4379.0 (3, 39) 7.3

From the above observation and our theoretical
analysis in Sect. 3.3, it follows that the Hybrid method
is more efficient and practical compared to the Window
method, the EWM with the Tunstall-like algorithm,
and the Run-length method.

Finally, we compare the Hybrid method with two
other methods: the Bos-Coster method [1] and the Ya-
cobi method [11]. The Bos-Coster method is similar to
the Window method. However, their method uses a
large window (for example, κ = 10) and must make a
short addition chain for a large dictionary D with many
elements, which is a hard task. Hence, this method is
not practical and not suited for implementation. The
Yacobi method uses an adaptive dictionary such as the
EWM. However, since his method is based on the LZ78
code in data compression theory and the primitive dic-
tionary Ds is created unboundedly by the incremental
parsing, the chain length cannot become short for prac-
tical size exponents, e.g. L = 512, 1024, and 2048.

These results lead us to the conclusion that the
Hybrid method is more efficient than the known meth-
ods.

5. Conclusion

In this paper, we have proposed the Run-length method
and the Hybrid method. We theoretically analyzed
these two methods and showed that the Hybrid method
is more efficient and practical, especially in the case
of the large Hamming weight, than known methods.
Roughly speaking, the Hybrid method can attain 8%
reduction, in the best case, in the average addition
chain length compared with the Window method.
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