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PAPER

Coding Theorems for Secret-Key Authentication Systems∗

Hiroki KOGA† and Hirosuke YAMAMOTO††, Regular Members

SUMMARY This paper provides the Shannon theoretic cod-
ing theorems on the success probabilities of the impersonation
attack and the substitution attack against secret-key authentica-
tion systems. Though there are many studies that develop lower
bounds on the success probabilities, their tight upper bounds
are rarely discussed. This paper characterizes the tight upper
bounds in an extended secret-key authentication system that in-
cludes blocklength K and permits the decoding error probability
tending to zero as K → ∞. In the extended system an encoder
encrypts K source outputs to K cryptograms under K keys and
transmits K cryptograms to a decoder through a public chan-
nel in the presence of an opponent. The decoder judges whether
K cryptograms received from the public channel are legitimate
or not under K keys shared with the encoder. It is shown that
2−KI(W ;E) is the minimal attainable upper bound of the success
probability of the impersonation attack, where I(W ;E) denotes
the mutual information between a cryptogram W and a key E.
In addition, 2−KH(E|W ) is proved to be the tight upper bound
of the probability that the opponent can correctly guess K keys
from transmitted K cryptograms, where H(E|W ) denotes the
conditional entropy of E given W .
key words: authentication, impersonation attack, substitution

attack, information-theoretic bounds, coding theorem

1. Introduction

Authentication schemes are used in order to guaran-
tee that a message received by a legitimate receiver is
actually transmitted from a legitimate sender in the
presence of opponents who try to cheat the legitimate
receiver. The authentication schemes, which should
be designed so that the cheat hardly succeed, are re-
alized by using secret key cryptography or public key
cryptography. This paper focuses on a class of the au-
thentication schemes based on secret key cryptography
that yields the unconditional security. The uncondi-
tionally secure authentication scheme enables authen-
tication even in the case that the opponents have unlim-
ited computational power and know everything about
the scheme except for the secret key.

Many papers that treat secret-key authentication
systems usually consider the block diagram shown in
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Fig. 1. In the figure let M ∈ M and E ∈ E be random
variables from a source and a key generator, respec-
tively. Key E is transmitted to both an encoder and a
decoder through a secret channel in advance. A legiti-
mate sender encryptsM to a cryptogramW ∈ W under
E and transmits W to a legitimate receiver through a
public channel. The cardinalities of the alphabets M, E
and W are assumed to be finite. When the legitimate
receiver receives a cryptogram Ŵ ∈ W from the public
channel, he decrypts Ŵ to M̂ under E. In the case
that no one attacks the authentication system, the le-
gitimate receiver always reproduces M̂ = M . An oppo-
nent, however, may try to impersonate the legitimate
sender by injecting a fraudulent cryptogram W ′ ∈ W
into the public channel whenW is not transmitted. The
opponent may also substitute a fraudulent cryptogram
W ′ ∈ W for the legitimate cryptogram W transmitted
through the public channel in the hope that W ′ would
be decrypted as a source outputM ′ �= M . The first and
the second attacks are usually called the impersonation
attack and the substitution attack, respectively. In the
presence of the opponent, Ŵ is either W or W ′.

Let PI and PS denote the success probabilities of
the impersonation attack and the substitution attack,
respectively. After Simmons [1] showed PI ≥ 2−I(W ;E),
several lower bounds on PI or PS, e.g., PS ≥ 2−H(E|W ),
are derived from the same viewpoints as Simmons’ [2]–
[4], where I(W ;E) denotes the mutual information and
H(E|W ) denote the conditional entropy. These lower
bounds, however, are not attainable in general. In
addition, the method establishing the lower bounds
suggests neither an operational meaning of the lower
bounds nor existences of any tight upper bounds of PI

and PS . This dissatisfaction may arise from the way
establishing the lower bounds. They are usually ob-
tained as a consequence of the convexity of −t log2 t for
t ∈ (0, 1), and hence, gives little insight into actual en-

Fig. 1 Block diagram of a secret-key authentication system.
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Fig. 2 Block diagram of an extended secret-key authentication
system.

coding and decoding schemes. The two probabilities PI

and PS are also discussed from viewpoints of the com-
binatorics [5], [6]. It is shown that PI ≥ |M|/|W| and
PS ≥ (|M| − 1)/(|W| − 1), respectively. However, the
optimal construction achieving the equality is limited
to a few special cases when there exist certain orthog-
onal arrays.

In order to unveil another basic properties of
the secret-key authentication systems, this paper an-
alyzes them from a viewpoint of the Shannon theory.
An extended secret-key authentication system treated
throughout this paper is shown in Fig. 2. In the ex-
tended system, source output Mk, k = 1, 2, . . . ,K, is
encrypted to cryptogram Wk under key Ek indepen-
dently for K times. The legitimate sender transmits
WK = (W1,W2, . . . ,WK) ∈ WK as a block to a legiti-
mate receiver sharing EK = (E1, E2, . . . , EK) through
a public channel in the presence of an opponent. The
opponent may inject W ′K = (W ′

1,W
′
2, . . . ,W

′
K) ∈ WK

when WK is not transmitted or substitute W ′K for
WK when WK is transmitted. The legitimate receiver
receives ŴK = (Ŵ1, Ŵ2, . . . , ŴK) ∈ WK from the pub-
lic channel, judges whether ŴK = WK or ŴK = W ′K

and tries to reproduce MK = (M1,M2, . . . ,MK).
There are two big differences between the secret-

key authentication systems given in Fig. 1 and Fig. 2.
Firstly, the decoder in Fig. 2 is assumed to permit suf-
ficiently small the decoding error probability, which
tends to zero as K → ∞, when ŴK = WK . Permit-
ting this negligible decoding error probability is essen-
tial when the extended secret-key authentication sys-
tem is analyzed from a viewpoint of the Shannon the-
ory. Actually, almost all source coding theorems and
channel coding theorems for block coding in the Shan-
non theory do not hold without permitting decoding er-
ror probability tending to zero as the blocklength goes
to infinity. Secondly, the decoder in Fig. 2 can statisti-
cally check whether (Ŵk, Ek), k = 1, 2, . . . ,K, is inde-
pendently generated according to PWE, where PWE de-
notes the joint probability distribution of a cryptogram
W and a key E. Such decoder can realize a secure
secret-key authentication system because it is usually
be hard for the opponent not knowing EK to find W ′K

such that (W ′
k, Ek), k = 1, 2, . . . ,K, is independently

generated according to PWE.
This paper attempts to obtain operational mean-

ings of I(W ;E) and H(E|W ) appearing in the Sim-
mons’ lower bounds. Let P (K)

I and P
(K)
S denote the

success probabilities of the impersonation attack and
the substitution attack in the extended secret-key au-
thentication system in Fig. 2, respectively, while let
P
(K)
error be the decoding error probability. We first intro-

duce a class G of sequences of decoders {GK}∞K=1 that
enables to define P (K)

error and P (K)
S adequately. We show

that I(W ;E) is the maximal attainable lower bound of
− 1

K log2 P
(K)
I for {GK}∞K=1 ∈ G satisfying P

(K)
error → 0

as K → ∞. We explicitly construct a sequence of de-
coders {G∗

K}∞K=1 ∈ G attaining the lower bound and
satisfying P (K)

error ≤ 2−K1−ε+o(K1−ε), where ε ∈ (0, 1) is
a constant that can be arbitrarily close to zero. No-
tice that, if the Simmons’ bound is applied to the ex-
tended secret-key authentication system in Fig. 2, for
each K ≥ 1 only − 1

K log2 P
(K)
I ≤ I(W ;E) holds for all

decoder GK satisfying P
(K)
error = 0. Notice again that

the Simmons’ bound does not guarantee the existence
of GK satisfying the inequality with equality.

Compared with P
(K)
I , the analysis on the asymp-

totic behavior of P (K)
S is much more difficult. How-

ever, we can evaluate the asymptotic behavior of P (K)
G ,

the probability that the opponent can correctly guess
EK from WK . Usually, P (K)

G gives a lower bound of
P
(K)
S . In this paper, we prove that all {GK}∞K=1 ∈ G

with P
(K)
error → 0 satisfy lim supK→∞− 1

K log2 P
(K)
G ≤

H(E|W ). In particular, {G∗
K}∞K=1 turns out to satisfy

− 1
K log2 P

(K)
G → H(E|W ) as K → ∞.

We note that a coding theorem on a secret-key
authentication system is also discussed by Sgarro [7].
In Sgarro’s scenario an encoder compresses a source
block MK ∈ MK by an entropy coding and encrypts
MK to a cryptogram W ∈ W under a key E ∈ E .
Here, notice that E and W are not elements of EK

and WK , respectively, while MK belongs to MK . It is
shown that, if 1

K log2 |W| > H(M), there exists a pair
of an encoder and a decoder that makes both of PI

and the decoding error probability arbitrarily small for
sufficiently large K, where H(M) denotes the entropy
of M . His coding theorem, however, is not so sharp. In
fact, no relationship is clarified between Sgarro’s coding
theorem and the Simmons’ bound.

Maurer [8] points out a relationship between the
hypothesis testing and the secret-key authentication
systems. If in Fig. 1 the opponent tries to imperson-
ate the legitimate sender by injecting W ′ generated ac-
cording to a probability distribution on W , then the
decoder can be regarded as a hypothesis tester. In
fact, the decoding error and the success of such im-
personation attack correspond to the type I error and
the type II error of the hypothesis tester, respectively.
In [8] PI ≥ 2−I(W ;E) is proved by using an inequality
on the hypothesis testing and the fact that the type I
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error probability is equal to zero. Since the decoder in
Fig. 2 can also be regarded as a hypothesis tester with
a nonzero type I error probability, the viewpoint from
the hypothesis testing is also useful in this paper. In
particular, the tightness of I(W ;E) in the asymptotic
behavior of − 1

K log2 P
(K)
I is proved by using the same

inequality.
This paper is organized as follows. In Sect. 2 the

authentication coding problem is mathematically for-
mulated with introducing notations. Formal definitions
of P (K)

I and P (K)
error are given. After defining P (K)

G and a
class G for sequences of decoders, coding theorems that
characterize asymptotic behaviors of P (K)

I and P
(K)
G

are claimed in Sect. 3. They are proved in Sect. 4 by
using the theory of the type and the typical sequences.

2. Problem Formulation

This section is devoted to mathematical formulation
of the problem to be considered. Let M, E and W
be finite sets satisfying |M| ≤ |W|. In Fig. 2 let
MK = (M1,M2, . . . ,MK) ∈ MK be a K-tuple of ran-
dom variables independently generated from a source
according to a probability distribution PM . Without
loss of generality, PM (m) > 0 is assumed for allm ∈ M.
Key EK = (E1, E2, . . . , EK) ∈ EK is a K-tuple of ran-
dom variables independently generated from a key gen-
erator according to a probability distribution PE sat-
isfying PE(e) > 0 for all e ∈ E . Key EK is trans-
mitted to both an encoder and a decoder in advance
through a secret channel perfectly protected against the
opponent. Suppose that Ek is independent of Mk for
k = 1, 2, . . . ,K. The probability distributions of MK

and EK are denoted by PMK and PEK , respectively.
Since MK and EK are independent random variables,
the joint probability distribution PMKEK of MK and
EK is equal to PMKPEK .

A legitimate sender encrypts MK to a K-tuple of
cryptograms WK = (W1,W2, . . . ,WK) ∈ WK under
EK by using an encoder FK : MK × EK → WK . For
all K ≥ 1 define FK as a mapping that generates WK

according to

Wk = f(Mk, Ek) for all k = 1, 2, . . . ,K, (1)

where f : M × E → W is a mapping satisfying
f(m, e) �= f(m′, e) for all (m, e) �= (m′, e). That is,
f( · , e) is one-to-one for each e ∈ E . Notice that such f
is easily constructed since |M| ≤ |W| is assumed. The
probability distribution of W = f(M,E) is written as

PW (w) =
∑

m∈M

∑
e∈E

PM (m)PE(e)χ(w, f(m, e)), w ∈ W ,

where χ(w, f(m, e)) = 1 if w = f(m, e) and 0 otherwise.
Clearly, (Wk, Ek), k = 1, 2, . . . ,K, become K pairs of
random variables independently generated according to

f m1 m2

e1 w1 w3

e2 w1 w4

e3 w2 w3

e4 w2 w4

g w1 w2 w3 w4

e1 m1 λ m2 λ
e2 m1 λ λ m2

e3 λ m1 m2 λ
e4 λ m1 λ m2

Fig. 3 Example of f and g when |M| = 2 and |E| = |W| = 4.

PWE = PWPE|W , where PWE denotes the joint prob-
ability distribution of W and E and PE|W denotes the
conditional probability distribution of E given W . The
probability distribution of WK , the joint probability
distribution of WK and EK , and the conditional prob-
ability distribution of EK given WK are denoted by
PW K , PW KEK and PEK |W K , respectively.

Throughout this paper f : M× E → W is an ar-
bitrarily fixed mapping satisfying I(W ;E) > 0, where
I(W ;E) denotes the mutual information defined as

I(W ;E) =
∑

w∈W

∑
e∈E

PW (w)PE|W (e|w) log2
PE|W (e|w)
PE(e)

.

The mutual information I(W ;E) is also denoted by
I(PW ;PE|W ). Since f( · , e) is one-to-one for each e ∈ E ,
m can be reproduced from w = f(m, e) and e by using
the following mapping g : W × E → M∪ {λ}:

g(w, e) =
{

m, if f(m, e) = w,
λ, if w /∈ {f(m, e) : m ∈ M}. (2)

It is easy to check that g(f(m, e), e) = m for all (m, e) ∈
M×E . Actually, f and g can be used as an encoder and
a decoder, respectively, in the secret-key authentication
system given in Fig. 1. An example of a pair of f and
g in case of M = {m1,m2}, E = {e1, e2, e3, e4} and
W = {w1, w2, w3, w4} is given in Fig. 3. If M and E
are uniformly distributed over M and E , respectively,
W is uniformly distributed over W . Furthermore, in
such a case since PW |E(w|e) = 1

2 for all (w, e) ∈ W ×E
satisfying g(w, e) �= λ, it is easy to verify I(W ;E) = 1.

In the presence of an opponent who may inject
W ′K ∈ WK into the public channel, a legitimate re-
ceiver receives ŴK = (Ŵ1, Ŵ2, . . . , ŴK) ∈ WK that
equals either WK or W ′K . The legitimate receiver
decrypts ŴK under EK by using a decoder GK :
WK × EK → MK ∪ {Λ}. If GK(ŴK , EK) ∈ MK ,
the legitimate receiver accepts ŴK = WK and repro-
duces M̂K = GK(ŴK , EK). Otherwise, he rejects ŴK

since he judges that the opponent injected fraudulent
W ′K .

The opponent is supposed to know anything on the
authentication system given in Fig. 2 but MK and EK .
That is, he knows K,FK , GK , PM , PE and PW and he
can observe WK transmitted through the public chan-
nel, but he does not know realizations of MK and EK .
The opponent may impersonate the legitimate sender
by injecting W ′K ∈ WK into the public channel when
WK is not transmitted. Such impersonation attack suc-
ceeds only when W ′K satisfies GK(W ′K , EK) ∈ MK
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under EK unknown to the opponent. The success prob-
ability of the impersonation attack is defined as

P
(K)
I = max

w′K∈WK

∑
eK∈EK

PEK (eK)χI(w′K , eK), (3)

where

χI(w′K , eK) =
{

1, if GK(w′K , eK) ∈ MK ,
0, otherwise.

That is, P (K)
I means the probability of the successful

impersonation attack for the case that the opponent
chooses optimal W ′K .

The opponent may interrupt the transmission
of WK and send W ′K to the legitimate receiver
in hope that W ′K would be decrypted as M ′K =
GK(W ′K , EK) ∈ MK not equal to MK . In this
paper the substitution attack is supposed to suc-
ceed when both (i) GK(W ′K , EK) ∈ MK , and (ii)
(GK(W ′K , EK))k �= g(Wk, Ek) for some 1 ≤ k ≤ K,
are satisfied, where (GK(W ′K , EK))k denotes the k-th
component of GK(W ′K , EK). The success probability
of the substitution attack is defined as follows:

P
(K)
S =

∑
wK∈WK

PW K (wK)

· max
w′K∈WK

[ ∑
eK∈EK

PEK |W K (eK |wK)χS(w′K , wK , eK)
]
,

(4)

where

χS(w′K , wK , eK)

=




1, if all of GK(wK , eK) ∈ MK ,
GK(w′K , eK) ∈ MK and
GK(wK , eK) �= GK(w′K , eK)
are satisfied,

0, otherwise.

The second sum in (4) is the probability that w′K is
successfully substituted for wK . Therefore, P (K)

S means
the probability of the successful substitution attack for
the case that the opponent choose W ′K optimally ac-
cording to WK .

Since FK( · , eK) is one-to-one for each eK ∈ EK ,
construction of GK satisfying GK(FK(mK , eK), eK) =
mK for all (mK , eK) ∈ MK × EK is easy. All
should be done is to define GK as GK(wK , eK) =
(g(w1, e1), g(w2, e2), . . . , g(wK , eK)) if (g(w1, e1), g(w2,
e2), . . . , g(wK , eK)) ∈ MK and Λ otherwise, where
wK = (w1, w2, . . . , wK) and eK = (e1, e2, . . . , eK).
However, we are not interested in such decoder. In
fact, if such decoder is used, the secret-key authentica-
tion system shown in Fig. 2 can be reduced to the con-
ventional secret-key authentication system in Fig. 1 by

replacing MK , EK and WK with M, E and W , respec-
tively. For the sake of realizing a secure authentication
system, we rather consider decoders that may cause de-
coding error. The decoding error probability for such
decoder GK is defined as

P (K)
error = PMKEK

{
GK(FK(MK , EK), EK) �= MK

}
.

(5)

In order to guarantee reliable communication from
the legitimate sender to the legitimate receiver, P (K)

error

should be sufficiently small. To this end, sequences of
decoders {GK}∞K=1 satisfying P

(K)
error → 0 as K → ∞

must be constructed. In the following sections, asymp-
totic behaviors of P (K)

I and P
(K)
S are discussed under

the constraint.

3. Main Results

In the secret-key authentication system shown in Fig. 2,
a decoder GK may cause decoding error. For given
WK = FK(MK , EK), however, it is important to no-
tice that there are two different kinds of decoding errors
as follows:

(A) GK(WK , EK) ∈ MK and GK(WK , EK) �= MK ,
(B) GK(WK , EK) = Λ.

If the decoding error of case (A) occurs, it cannot be
distinguished from the successful substitution attack by
the opponent when W ′K = WK . In order to avoid the
decoding error of case (A), we first introduce a class GK

of decoders. For a given decoder GK define R(K)
0 and

R(K)
1 as

R(K)
0 =

{
(wK , eK) ∈ WK × EK : GK(wK , eK) = mK

such that FK(mK , eK) = wK
}
,

R(K)
1 =

{
(wK , eK) ∈ WK × EK : GK(wK , eK) = Λ

}
,

respectively. If R(K)
0 and R(K)

1 of GK form a parti-
tion of WK × EK , GK is supposed to belong to the
class GK . That is, GK ∈ GK maps (wK , eK) satisfying
(g(w1, e1), g(w2, e2), . . . , g(wK , eK)) ∈ MK to either
(g(w1, e1), g(w2, e2), . . . , g(wK , eK)) or Λ, while it maps
all (wK , eK) satisfying λ ∈ {g(w1, e1), g(w2, e2), . . . ,
g(wK , eK)} to Λ. Notice that the decoding error of
case (A) cannot occur for all GK ∈ GK . We call R(K)

0

the decodable region of GK since all elements in R(K)
0

are correctly decoded by GK . Define a class G for se-
quences of decoders {GK}∞K=1 by

G =
{
{GK}∞K=1 : GK ∈ GK for all K ≥ 1

}
. (6)

Now, an important sequence of decoders {G∗
K}∞K=1

∈ G is given. Since for each K ≥ 1 G∗
K belongs to GK ,

description ofR∗(K)
0 corresponding to G∗

K specifies G∗
K .
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Before describing R∗(K)
0 , for an arbitrarily fixed θ > 0

define A(K) and B(K)(wK) as follows:

A(K) =
{
wK ∈ WK : D(PwK ||PW ) < θ

}
, (7)

B(K)(wK) =
{
eK ∈ EK :

D(PeK |wK ||PE|W |PwK ) < θ
}
, (8)

where PwK denotes the type of wK , PeK |wK denotes
the conditional type of eK given wK , D(PwK ||PW ) and
D(PeK |wK ||PE|W |PwK ) are the divergence and the con-
ditional divergence defined as

D(PwK ||PW ) =
∑

w∈W
PwK (w) log2

PwK (w)
PW (w)

, (9)

D(PeK |wK ||PE|W |PwK ) =
∑

w∈W
PwK (w)

·
∑
e∈E

PeK |wK (e|w) log2
PeK |wK (e|w)
PE|W (e|w) , (10)

respectively. See [9] or Sect. 4.1 of this paper for defi-
nitions of the type and the conditional type. By using
A(K) and B(K)(wK), R∗(K)

0 is expressed in the follow-
ing form:

R∗(K)
0 =

{
(wK , eK) ∈ WK × EK :

wK ∈ A(K), eK ∈ B(K)(wK) and
λ /∈ {g(w1, e1), g(w2, e2) . . . , g(wK , eK)}

}
. (11)

If (wK , eK) ∈ R∗(K)
0 , then G∗

K(wK , eK) = (g(w1, e1),
g(w2, e2), . . . , g(wK , eK)). Otherwise, G∗

K(wK , eK) =
Λ, i.e., (wK , eK) is rejected as fraudulent by the decoder
G∗

K even if (g(w1, e1), g(w2, e2), . . . , g(wK , eK)) ∈ MK .
If R∗(K)

0 is defined by setting θ = K−ε with 0 <
ε < 1 in (7) and (8), the following theorem holds with
respect to P (K)

error and P
(K)
I .

Theorem 1: Fix ε ∈ (0, 1) arbitrarily and for each
K ≥ 1 construct R∗(K)

0 by setting θ = K−ε in the def-
initions of A(K) and B(K)(wK) given in (7) and (8),
respectively. If ŴK = WK is decrypted by G∗

K corre-
sponding to R∗(K)

0 , then P
(K)
error satisfies

P (K)
error = 2−K1−ε+o(K1−ε). (12)

In addition, if ŴK = W ′K is decrypted by the same
G∗

K , for any δ ∈ (0, I(W ;E)) there exists an integer
K0 = K0(ε, δ) such that P (K)

I satisfies

P
(K)
I ≤ 2−K[I(W ;E)−δ] (13)

for all integers K ≥ K0. ✷

Actually, Theorem 1 claims that both lim
K→∞

P
(K)
error

= 0 and

lim inf
K→∞

− 1
K

log2 P
(K)
I ≥ I(W ;E) (14)

are satisfied in case that {G∗
K}∞K=1 ∈ G is used. The

following theorem claims, however, that the limit supe-
rior of − 1

K log2 P
(K)
I is less than or equal to I(W ;E)

for all {GK}∞K=1 ∈ G as far as they have the decoding
error probabilities tending to zero as K → ∞.

Theorem 2: Any sequence of decoders {GK}∞K=1 ∈
G with

lim
K→∞

P (K)
error = 0 (15)

satisfies

lim sup
K→∞

− 1
K

log2 P
(K)
I ≤ I(W ;E). (16)

✷

Now, the asymptotic behavior of P (K)
S is consid-

ered. It is easy to see, however, that P (K)
S defined in (4)

satisfies − 1
K log2 P

(K)
S → 0 as K → ∞ since the sub-

stitution of WK for W ′K satisfying GK(W ′K , EK) ∈
MK and there exists a k with ((GK(W ′K , EK))k �=
(GK(WK , EK))k is defined to be successful. Actu-
ally, the probability that W ′K satisfying W ′

1 �= W1 and
W ′

k = Wk for all k = 2, 3, . . . ,K is accepted by GK does
not depend on K and gives a lower bound of P (K)

S . In
order to clarify a relationship between the asymptotic
behavior of − 1

K log2 P
(K)
S and an information theoretic

quantity such as H(E|W ), the definition of P (K)
S must

be modified. Nevertheless, even if the substitution of
WK for W ′K is supposed to succeed when both (i)
GK(W ′K , EK) ∈ MK , and (ii) ((GK(W ′K , EK))k �=
(GK(WK , EK))k for all 1 ≤ k ≤ K, are satisfied, the
analysis of P (K)

S with increasing K is much more dif-
ficult than the analysis of P (K)

I unfortunately. Hence,
we will focus on another probability on the substitution
attack that decays of exponential order of K and whose
exponent is related to H(E|W ).

Suppose the situation that the opponent tries to
guess EK from WK correctly. The opponent who
knows EK can always succeed in his substitution at-
tack. All he has to do is to choose his desirable
M ′K = (M ′

1,M
′
2, . . . ,M

′
K) satisfying M ′K �= MK ar-

bitrarily and to substitute W ′K = FK(M ′K , EK) for
WK . When the opponent takes the optimal strategy in
guessing EK from WK that (WK , EK) is decryptable,
its success probability is given by

P
(K)
G =

∑
wK∈WK

PW K (wK)

· max
eK :(wK ,eK)∈R(K)

0

PEK |W K (eK |wK), (17)

where R(K)
0 denotes the decodable region of GK ∈ GK
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and the maximum in (17) is supposed to be zero if
{eK ∈ EK : (wK , eK) ∈ R(K)

0 } = φ. It is easy to
prove that P (K)

G ≤ P
(K)
S under a weak assumption on

GK such as |R(K)
0 (eK)| > 1 for all eK ∈ EK , where

R(K)
0 (eK) = {wK ∈ WK : (wK , eK) ∈ R(K)

0 }.
The following two theorems characterize the

asymptotic behavior of P (K)
G . The two theorems claim

that H(E|W ) is the maximal attainable lower bound of
− 1

K log2 P
(K)
G for {GK}∞K=1 ∈ G satisfying P

(K)
error → 0

as K → ∞.

Theorem 3: Fix ε ∈ (0, 1) arbitrarily and for each
K ≥ 1 construct G∗

K in the same way as Theorem 1. If
ŴK = WK is decrypted by G∗

K , then P
(K)
error satisfies

P (K)
error = 2−K1−ε+o(K1−ε). (18)

Moreover, for any δ ∈ (0, H(E|W )) there exists an in-
teger K0 = K0(ε, δ) such that P (K)

G satisfies

P
(K)
G ≤ 2−K[H(E|W )−δ] (19)

for all integers K ≥ K0. ✷

Theorem 4: Any sequence of decoders {GK}∞K=1 ∈
G with

lim
K→∞

P (K)
error = 0 (20)

satisfies

lim sup
K→∞

− 1
K

log2 P
(K)
G ≤ H(E|W ). (21)

✷

Notice that Theorem 3 guarantees that {G∗
K}∞K=1

∈ G satisfies

lim inf
K→∞

− 1
K

log2 P
(K)
G ≥ H(E|W ). (22)

Hence, Theorems 1–4 claim that {G∗
K}∞K=1 ∈ G satisfies

both

lim
K→∞

− 1
K

log2 P
(K)
I = I(W ;E) (23)

and

lim
K→∞

− 1
K

log2 P
(K)
G = H(E|W ). (24)

In the secret-key authentication system in Fig. 2, eK

is transmitted to both the encoder and the decoder
in advance. Since the ordinary source coding theo-
rem claims that eK can be transmitted with about
KH(E) bits, sharing eK can be regarded to sharing
KH(E) bits in common. From the relation H(E) =
I(W ;E)+H(E|W ), we can intuitively interpret G∗

K as
a decoder that uses KI(W ;E) random bits to protect
WK against the impersonation attack and KH(E|W )
bits to hide EK from the opponent.

4. Proofs

4.1 Properties of the Type and the Typical Sequences

This subsection briefly summarizes basic properties of
the type, the conditional type and the typical sequences
used in the proofs of theorems given in the preceding
section. Several formulae that play important roles in
the proofs are given without proving each of them. See
[9] for their proofs.

The type PwK of wK = (w1, w2, . . . , wK) ∈ WK is
a probability distribution on W defined as

PwK (a) =
1
K

|{k : wk = a}|, a ∈ W , (25)

where | · | denotes the cardinality of the set. Let T (K)
W

denote the set composed of all the types of wK ∈ WK .
The cardinality of T (K)

W satisfies

|T (K)
W | ≤ (K + 1)|W|. (26)

For any given QW ∈ T (K)
W define WK(QW ) as follows:

WK(QW ) = {wK ∈ WK : PwK = QW }, (27)

which is the subset of WK whose all elements have type
QW . It is known that WK(QW ) satisfies

1
(K + 1)|W| · 2

KH(QW ) ≤ |WK(QW )| ≤ 2KH(QW )(28)

for any QW ∈ T (K)
W , where H(QW ) is the entropy de-

fined as

H(QW ) =
∑

w∈W
−QW (w) log2QW (w). (29)

The probability that wK ∈ WK(QW ), QW ∈ T (K)
W is

independently generated according to the probability
distribution PW is written as

PW K (wK) = 2−K[H(QW )+D(QW ||PW )], (30)

where D( · || · ) is the divergence defined in (9).
The conditional type is defined by way of the

joint type. The joint type PwKeK of wK =
(w1, w2, . . . , wK) ∈ WK and eK = (e1, e2, . . . , eK) ∈
EK is a joint probability distribution on W×E defined
as

PwKeK (a, b) =
1
K

|{k : (wk, ek) = (a, b)}| (31)

for (a, b) ∈ W × E . The conditional type PeK |wK is
defined as the stochastic matrices from W to E whose
all components are determined by

PwK (a)PeK |wK (b |a) = PwKeK (a, b) (32)

for (a, b) ∈ W × E . Let T (K)
E|W denote the set composed
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of all the conditional types from WK to EK . The car-
dinality of T (K)

E|W is bounded as follows:

|T (K)
E|W | ≤ (K + 1)|W||E|. (33)

For any given QW ∈ T (K)
W , wK ∈ WK(QW ) and

QE|W ∈ T (K)
E|W define EK(QE|W |wK) as

EK(QE|W |wK)={eK ∈ EK : PeK |wK =QE|W }.
(34)

Then, EK(QE|W |wK) satisfies

1
(K + 1)|W||E| · 2

KH(QE|W |QW )

≤ |EK(QE|W |wK)| ≤ 2KH(QE|W |QW ), (35)

where H(QE|W |QW ) is the conditional entropy defined
as

H(QE|W |QW )

=
∑

w∈W

∑
e∈E

−QW (w)QE|W (e|w) log2QE|W (e|w). (36)

For any given QW ∈ T (K)
W , wK ∈ WK(QW ) and

QE|W ∈ T (K)
E|W , it is easy to prove that

PEK |W K (eK |wK)

= 2−K[H(QE|W |QW )+D(QE|W ||PE|W |QW )] (37)

for all eK ∈ EK(QE|W |wK), where D( · || · | · ) is the
conditional divergence defined in (10).

Now, define T (K)
W and T

(K)
E|W (wK) as follows:

T
(K)
W =

{
wK ∈ WK :

|PwK (a)− PW (a)| < δK for all a ∈ W and
PwK (a) = 0 whenever PW (a) = 0

}
, (38)

T
(K)
E|W (wK) =

{
eK ∈ EK : |PwKeK (a, b)

− PwK (a)PE|W (b|a)| < δK for all (a, b)
∈ W × E and PwKeK (a, b) = 0
whenever PE|W (b|a) = 0

}
, (39)

where {δK}∞K=1 is an arbitrary positive sequence satis-
fying δK → 0 and

√
KδK → ∞ as K → ∞. It is known

that T (K)
W and T

(K)
E|W (wK) satisfy

lim
K→∞

PW K

{
WK ∈ T

(K)
W

}
= 1, (40)

lim
K→∞

PEK |W K

{
EK ∈ T

(K)
E|W (wK)

∣∣ wK
}
= 1 (41)

for an arbitrary wK ∈ WK . By using (40) and (41), it
is easy to prove that

lim
K→∞

PW KEK

{
(WK , EK) ∈ T (K)

}
= 1, (42)

where T (K) is defined as

T (K) =
{
(wK , eK) ∈ WK × EK :

wK ∈ T
(K)
W and eK ∈ T

(K)
E|W (wK)

}
. (43)

In addition, it is important to notice that (30), (37)
and the definition of {δK}∞K=1 lead to

PW K (wK) = 2−KH(W )+o(K), (44)

PEK |W K (eK |wK) = 2−KH(E|W )+o(K), (45)

for wK ∈ T
(K)
W and (wk, eK) ∈ T (K), respectively,

where H(E|W ) = H(PE|W |PW ).

4.2 Proof of Theorem 1

Theorem 1 is proved by using four lemmas that are
shown in this subsection. While Lemmas 1–3 help eval-
uating P (K)

error, Lemma 4 is used for evaluating P (K)
I .

The decoding error probability P (K)
error in (5) is orig-

inally defined with respect to the joint probability dis-
tribution PMKEK . Lemma 1 claims that PW KEK can
also be used to express P (K)

error if GK ∈ GK .

Lemma 1: Suppose that {GK}∞K=1 ∈ G and let
(R(K)

0 ,R(K)
1 ) be the partition of WK ×EK correspond-

ing to GK . Then,

P (K)
error = PW KEK

{
(WK , EK) ∈ R(K)

1

}
(46)

for all K ≥ 1.

Proof: Fix K ≥ 1 and GK ∈ GK arbitrarily. It is
sufficient for proving (46) to establish

PMKEK

{
(MK , EK) ∈ D(K)

}

= PW KEK

{
(WK , EK) ∈ R(K)

0

}
, (47)

where

D(K) =
{
(mK , eK) ∈ MK × EK :

GK(FK(mK , eK), eK) = mK
}
.

For an arbitrarily fixed eK ∈ EK define D(K)(eK) and
R(K)
0 (eK) as follows:

D(K)(eK) =
{
mK ∈ MK : (mK , eK) ∈ D(K)

}
, (48)

R(K)
0 (eK) =

{
wK ∈ WK : (wK , eK) ∈ R(K)

0

}
. (49)

It is important to note that FK( · , eK) is a bijec-
tive from D(K)(eK) to R(K)

0 (eK). In fact, FK( · , eK)
is clearly one-to-one from the definitions of f and
FK . On the other hand, for any wK ∈ R(K)

0 (eK)
there exists mK ∈ MK such that FK(mK , eK) =
wK and GK(wK , eK) = mK . Such mK satisfies
GK(FK(mK , eK), eK) = mK and therefore belongs to
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D(K)(eK). This argument establishes the fact that
R(K)
0 (eK) ⊆ {FK(mK , eK) : mK ∈ D(K)(eK)}, which

implies FK( · , eK) is onto.
Since for each eK ∈ EK FK( · , eK) is a bijective

from D(K)(eK) to R(K)
0 (eK), wK ∈ R(K)

0 (eK) is gener-
ated by the encoder only when mK ∈ D(K)(eK) satis-
fying FK(mK , eK) = wK is the source output. Accord-
ingly,

PMK (mK) = PW K |EK (FK(mK , eK)|eK) (50)

for all mK ∈ D(K)(eK). Then, the left hand side of
(47) is evaluated in the following way:

PMKEK

{
(MK , EK) ∈ D(K)

}
1)
=

∑
(mK ,eK)∈D(K)

PMK (mK)PEK (eK)

2)
=

∑
eK∈EK

PEK (eK)
∑

mK∈D(K)(eK)

PMK (mK)

3)
=

∑
eK∈EK

PEK (eK) ·

∑
mK∈D(K)(eK)

PW K |EK (FK(mK , eK)|eK)

4)
=

∑
eK∈EK

PEK (eK)
∑

wK∈R(K)
0 (eK)

PW K |EK (wK |eK)

5)
= PW KEK

{
(WK , EK) ∈ R(K)

0

}
, (51)

where the marked equalities in (51) follow since

1): EK is independent of MK ,
2): D(K)(eK) is defined by (48),
3): (50) holds for all mK ∈ D(K)(eK),
4): {FK(mK , eK) : mK ∈ D(K)(eK)} = R(K)

0 (eK) for
each eK ∈ EK ,

5): R(K)
0 (eK) is defined by (49). ✷

The following two lemmas, Lemma 2 and
Lemma 3, are used for evaluating P

(K)
error caused by

{G∗
K}∞K=1. Though these two lemmas are obtained as

consequences of the Sanov’s lemma (see e.g. [10], [11]),
proofs of the lemmas are given in Appendix in order to
make this paper self-contained.

Lemma 2: Fix θ > 0 arbitrarily and let A(K) be the
set defined by (7). Then,

PW K

{
WK ∈ A(K)

}
≤ (K + 1)|W| · 2−Kθ (52)

for all K ≥ 1, where A(K) denotes the complement of
A(K).

Lemma 3: Fix θ > 0 arbitrarily and for any given
wK ∈ WK let B(K)(wK) be the set defined by (8).
Then,

PEK |W K

{
EK ∈ B(K)(wK)

∣∣ wK
}

≤ (K + 1)|W||E| · 2−Kθ (53)

for allK ≥ 1, where B(K)(wK) denotes the complement
of B(K)(wK).

The following lemma gives an upper bound of P (K)
I .

Hereafter, let PW be the set of all probability distri-
butions on W and PE|W be the set of all stochastic
matrices from W to E .
Lemma 4: Fix θ > 0 arbitrarily. For a given QW ∈
PW define AP and BP (QW ) as

AP = {QW ∈ PW : D(QW ||PW ) < θ}, (54)
BP (QW ) = {QE|W ∈ PE|W :

D(QE|W ||PE|W |QW ) < θ}, (55)

respectively. If ŴK is decrypted by G∗
K in the secret-

key authentication system given in Fig. 2, P (K)
I satisfies

P
(K)
I ≤ (K + 1)|W||E| · exp2

[
−K min

QW ∈AP

min
QE|W ∈BP (QW )

[I(QW ;QE|W ) +D(QE ||PE)]
]
(56)

for all K ≥ 1, where for given QW ∈ AP and QE|W ∈
BP (QW ) QE means the marginal probability distribu-
tion on E determined by

QE(e) =
∑

w∈W
QW (w)QE|W (e|w), e ∈ E .

Proof: FixK ≥ 1 arbitrarily. For all (w′K , eK) ∈ WK×
EK define χ̃I(w′K , eK) as

χ̃I(w′K , eK) =




1, ifw′K ∈ A(K) and
eK ∈ B(K)(w′K),

0, otherwise.
(57)

When G∗
K is used, χI(w′K , eK) in (3) equals one if

all of (i) w′K ∈ A(K), (ii) eK ∈ B(K)(w′K) and (iii)
λ /∈ {g(w′

1, e1), g(w
′
2, e2), . . . , g(w

′
K , eK)} are satisfied

and zero otherwise. Therefore,

χI(w′K , eK) ≤ χ̃I(w′K , eK) (58)

for all (w′K , eK) ∈ WK × EK , which leads to

P
(K)
I ≤ max

w′K∈WK

∑
eK∈EK

PEK (eK)χ̃I(w′K , eK). (59)

Note that χ̃I(w′K , eK) = 0 for all eK ∈ EK if w′K ∈
A(K). In addition, if w′K ∈ A(K), χ̃I(w′K , eK) = 0 for
all eK ∈ B(K)(w′K). By using these facts, (59) can be
bounded in the following form:

P
(K)
I ≤ max

w′K∈A(K)

∑
eK∈B(K)(w′K)

PEK (eK)χ̃I(w′K , eK)
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= max
QW ∈A(K)

T

max
w′K∈WK(QW )

∑
QE|W ∈B(K)

T
(QW )

∑
eK∈EK(QE|W |w′K)

PEK (eK)χ̃I(w′K , eK), (60)

where A(K)
T and B(K)

T (QW ) are the sets defined as

A(K)
T = {QW ∈ T (K)

W : D(QW ||PW ) < θ}, (61)

B(K)
T (QW ) = {QE|W ∈ T (K)

E|W :

D(QE|W ||PE|W |QW ) < θ}, (62)

respectively.
Now, fix QW ∈ A(K)

T and w′K ∈ WK(QW ) arbi-
trarily. It is important to notice that χ̃I(w′K , eK) = 1
for all QE|W ∈ B(K)

T (QW ) and eK ∈ EK(QE|W |w′K)
from the definition of χ̃I(w′K , eK) in (57). This fact
enables to evaluate the right hand side of (60) as fol-
lows:

P
(K)
I

1)

≤ max
QW ∈A(K)

T

max
w′K∈WK(QW )

∑
QE|W ∈B(K)

T
(QW )

|EK(QE|W |w′K)| · 2−K[H(QE)+D(QE||PE)]

2)

≤ max
QW ∈A(K)

T

max
w′K∈WK(QW )

∑
QE|W ∈B(K)

T
(QW )

2KH(QE|W |QW ) · 2−K[H(QE)+D(QE||PE)]

3)
= max

QW ∈A(K)
T

∑
QE|W ∈B(K)

T
(QW )

2−K[I(QW ;QE|W )+D(QE||PE)], (63)

where the marked equality and inequalities in (63) are
established from

1): for any given QW ∈ A(K)
T , w′K ∈ WK(QW ) and

QE|W ∈ B(K)
T (QW ), χ̃I(w′K , eK) = 1 for all

eK ∈ EK(QE|W |w′K) and equality PEK (eK) =
2−K[H(QE)+D(QE||PE)] that is established in the
same way as (30),

2): inequality (35),
3): I(QW ;QE|W ) = H(QE) −H(QE|W |QW ) and the

sum no longer depends on w′K ∈ WK(QW ).

Finally, the right hand side of (56) is obtained in
the following way:

P
(K)
I

4)

≤ max
QW ∈A(K)

T

(K + 1)|W||E| exp2
[
−K

min
QE|W ∈B(K)

T
(QW )

[I(QW ;QE|W ) +D(QE ||PE)]
]

5)

≤ (K + 1)|W||E| · exp2
[
−K min

QW ∈AP

min
QE|W ∈BP (QW )

[I(QW ;QE|W ) +D(QE ||PE)]
]
, (64)

where the marked inequalities in (64) follow from

4): inequality (33),
5): A(K)

T ⊂ AP and B(K)
T (QW ) ⊂ BP (QW ). ✷

Proof of Theorem 1:
Theorem 1 has two claims. One is on P

(K)
error and

the other is on P
(K)
I . Firstly, the claim on P

(K)
error

in (12) is established. Fix ε ∈ (0, 1) arbitrarily and
define θ as θ = K−ε. In case that ŴK = WK

is decrypted by G∗
K , the decoding error occurs when

WK ∈ A(K) or EK ∈ B(K)(WK). It is clear that
λ /∈ {g(W1, E1), g(W2, E2), . . . , g(WK , EK)} from the
definition of FK . Therefore, by using Lemma 1 P

(K)
error

can be evaluated in the following form:

P (K)
error ≤ PW K

{
WK ∈ A(K)

}
+

∑
wK∈A(K)

PW K (wK)

· PEK |W K

{
EK ∈ B(K)(wK)

∣∣ wK
}
. (65)

Lemma 2 implies that the first term in the right hand
side of (65) can be bounded as follows:

PW K

{
WK ∈ A(K)

}
≤ (K + 1)|W| · 2−K1−ε

. (66)

Moreover, Lemma 3 yields
∑

wK∈A(K)

PW K (wK)PEK |W K

{
EK ∈ B(K)(wK)

∣∣ wK
}

≤
∑

wK∈A(K)

PW K (wK) · (K + 1)|W||E| · 2−K1−ε

≤ (K + 1)|W||E| · 2−K1−ε

. (67)

Inequality (12) is obtained by combining (65) with (66)
and (67).

Secondly, the claim on P
(K)
I in (13) is devel-

oped. Lemma 4 is a key to the proof. Since θ =
K−ε is a monotone decreasing function of K, AP

and BP (QW ) shrink to the neighborhoods of PW and
PE|W as K increases, respectively. Therefore, for any
δ ∈ (0, I(W ;E)), the continuities of the mutual infor-
mation and the divergence guarantee the existence of
an integer K0(ε, δ) satisfying

min
QW ∈AP

min
QE|W ∈BP (QW )

[I(QW ;QE|W ) +D(QE ||PE)]

+
log2(K + 1)|W||E|

K
≥ I(W ;E)− δ (68)

for all integers K > K0(ε, δ). Combining Lemma 4
with (68) yields (13). ✷
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4.3 Proof of Theorem 2

Proof of Theorem 2:
Assume that there exists {GK}∞K=1 ∈ G satisfying both
(15) and

lim sup
K→∞

− 1
K

log2 P
(K)
I > I(W ;E). (69)

We show that this assumption leads to a contradiction.
Notice that inequality (69) means the existence of a
δ > 0 and a subsequence {Kj}∞j=1 such that

− 1
Kj

log2 P
(Kj)
I ≥ I(W ;E) + δ for all j ≥ 1 (70)

and Kj → ∞ as j → ∞.
To this end, let (R(K)

0 ,R(K)
1 ), K ≥ 1, be the parti-

tion of WK ×EK corresponding to GK . It is important
to note that P (K)

error and P
(K)
I can be expressed as fol-

lows, respectively:

P (K)
error = PW KEK

{
(WK , EK) ∈ R(K)

1

}
, (71)

P
(K)
I = max

w′K∈WK
PEK

{
(w′K , EK) ∈ R(K)

0

}
. (72)

If the opponent generates W ′K ∈ WK according to a
probability distribution QW K on WK and injects W ′K

into the public channel, GK accept W ′K as legitimate
with probability P̃

(K)
I given by

P̃
(K)
I =QW KPEK

{
(W ′K , EK) ∈ R(K)

0

}

=
∑

w′K∈WK

QW K (w′K)PEK

{
(w′K , EK) ∈ R(K)

0

}
.

(73)

Clearly, (72) and (73) imply

P̃
(K)
I ≤ P

(K)
I (74)

for all K ≥ 1 and QW K ∈ PWK .
It is important to notice that, if the opponent in-

jects W ′K generated according to QW K , the decoder
can be considered as a hypothesis tester with the null
hypothesis H0 and the alternative hypothesis H1 de-
fined as

H0 : (ŴK , EK) ∼ PW KEK , (75)

H1 : (ŴK , EK) ∼ QW KPEK . (76)

Here, K-tuple of cryptograms ŴK received by the de-
coder is regarded as an input to the hypothesis tester.
The hypothesis tester accepts H0 when (ŴK , EK) ∈
R(K)
0 . Otherwise, it acceptsH1 though it has no knowl-

edge on QW K . Denote by α and β the probability of
the type I error and the type II error of the hypothe-
sis tester, respectively. Obviously from (71) and (73),

α = P
(K)
error and β = P̃

(K)
I . It is known that for any

K ≥ 1, QW K and partition (R(K)
0 ,R(K)

1 ), the following
inequality holds:

α log2
α

1− β
+ (1− α) log2

1− α

β

≤ D(PW KEK ||QW KPEK ) (77)

[11, Theorem 4.4.1], where D(PW KEK ||QW KPEK ) is
the divergence between PW KEK and QW KPEK defined
as

D(PW KEK ||QW KPEK ) =
∑

wK∈WK

∑
eK∈EK

· PW KEK (wK , eK) log2
PW KEK (wK , eK)

QW K (wK)PEK (eK)
. (78)

Moreover, the left hand side of (77) can be written as

α log2
α

1− β
+ (1− α) log2

1− α

β

= −h(α)+α log2
1

1−β+(1−α) log2
1
β
, (79)

where h(α) = −α log2 α−(1−α) log2(1−α) denotes the
binary entropy. By using h(α) ≤ 1 and α log2

1
1−β ≥ 0

for all α ∈ (0, 1) and β ∈ (0, 1) in (79), we obtain

−1 + (1− α) log2
1
β

≤ D(PW KEK ||QW KPEK ). (80)

Hereafter, we consider the case of K = Kj , j ≥ 1.
Since (70) and (74) mean

β = P̃
(Kj)
I ≤ P

(Kj)
I ≤ 2−Kj [I(W ;E)+δ], (81)

(80) is evaluated as

−1 + (1− α)Kj [I(W ;E) + δ]
≤ D(PW Kj EKj ||QW KjPEKj ) (82)

for all j ≥ 1. Note that the left hand side of (82) no
longer depends on QW Kj and therefore the inequality
(82) can be tightened as

−1 + (1− α)Kj [I(W ;E) + δ]
≤ min

Q
W

Kj
∈P

WKj

D(PW Kj EKj ||QW KjPEKj ), (83)

where PWKj denotes the set of all probability distribu-
tions on WKj . By using well-known facts such as

D(PW Kj EKj ||QW KjPEKj )

= I(WKj ;EKj ) +D(PW Kj ||QW Kj ),

D(PW Kj ||QW Kj ) ≥ 0 and D(PW Kj ||QW Kj ) = 0 if and
only if PW Kj = QW Kj , the right hand side of (83) is
evaluated as I(WKj ;EKj ) = KjI(W ;E). Hence, (83)
is equivalent to

−1 + (1− α)Kj [I(W ;E) + δ] ≤ KjI(W ;E), (84)
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which implies

α = P (Kj)
error ≥

δ − 1
Kj

I(W ;E) + δ
(85)

for all j ≥ 1. Since δ is a positive number satisfying (70)
and Kj → ∞ as j → ∞, (85) claims that P (K)

error does
not converge to zero as K → ∞. Inequality (85) con-
tradicts the assumption on {GK}∞K=1 that is assumed
to satisfy both (15) and (69). ✷

4.4 Proofs of Theorem 3 and Theorem 4

Proof of Theorem 3:
Since (18) is proved in the same way as in the proof of
Theorem 1, only (19) is proved here. For a decoder G∗

K

P
(K)
G can be expressed as follows:

P
(K)
G =

∑
wK∈A(K)

PW K (wK)

· max
eK∈B(K)(wK)

PEK |W K (eK |wK)

=
∑

QW ∈A(K)
T

∑
wK∈WK(QW )

PW K (wK) · max
QE|W ∈B(K)

T
(QW )

· max
eK∈EK(QE|W |wK)

PEK |W K (eK |wK), (86)

where A(K)
T and B(K)

T (QW ) are sets defined in (61) and
(62), respectively. By using the properties of the types
and the conditional types, P (K)

G is evaluated in the fol-
lowing way:

P
(K)
G

1)
=

∑
QW ∈A(K)

T

∑
wK∈WK(QW )

PW K (wK)

· max
QE|W ∈B(K)

T
(QW )

2−K[H(QE|W |QW )+D(QE|W ||PE|W |QW )]

2)
=

∑
QW ∈A(K)

T

|WK(QW )| · 2−K[H(QW )+D(QW ||PW )]

· max
QE|W ∈B(K)

T
(QW )

2−K[H(QE|W |QW )+D(QE|W ||PE|W |QW )]

3)

≤
∑

QW ∈A(K)
T

2−KD(QW ||PW )

· max
QE|W ∈B(K)

T
(QW )

2−K[H(QE|W |QW )+D(QE|W ||PE|W |QW )]

≤ |A(K)
T | · max

QW ∈A(K)
T

2−KD(QW ||PW )

· max
QE|W ∈B(K)

T
(QW )

2−K[H(QE|W |QW )+D(QE|W ||PE|W |QW )]

4)

≤ (K + 1)|W| · exp2
[
−K min

QW ∈A(K)
T

min
QE|W ∈B(K)

T
(QW )

· [H(QE|W |QW ) +D(QW ||PW )

+D(QE|W ||PE|W |QW )]
]

5)

≤ (K + 1)|W| · exp2
[
−K min

QW ∈AP

min
QE|W ∈BP (QW )

· [H(QE|W |QW ) +D(QW ||PW )

+D(QE|W ||PE|W |QW )]
]

(87)

where AP and BP (QW ) are the sets defined in (54)
and (55), respectively, and the marked equalities and
inequalities in (87) are obtained since

1): for any QW ∈ A(K)
T , wK ∈ WK(QW ) and QE|W ∈

B(K)
T (QW ), (37) holds for all eK ∈ EK(QE|W |wK),

2): (30) holds for all wK ∈ WK(QW ),
3): (28) holds for all QW ∈ A(K)

T ,
4): A(K)

T ⊂ T (K)
W and (26) gives an upper bound of

|T (K)
W |,

5): A(K)
T ⊂ AP and B(K)

T (QW ) ⊂ BP (QW ).

Since θ = K−ε, AP and BP (QW ) depend on K
and shrink to the neighborhoods of PW and PE|W , re-
spectively. The continuity of the conditional entropy,
the divergence and the conditional divergence imply the
existence of an integer K0(ε, δ) satisfying

min
QW ∈AP

min
QE|W ∈BP (QW )

[H(QE|W |QW ) +D(QW ||PW )

+D(QE|W ||PE|W |QW )] +
log2(K + 1)|W|

K
≥ H(E|W )− δ (88)

for all K ≥ K0. The claim of Theorem 3 is obtained by
combining (88) with (87). ✷

Proof of Theorem 4:
Consider a sequence of decoders {GK}∞K=1 ∈ G satis-
fying (20). For each K ≥ 1 let (R(K)

0 ,R(K)
1 ) be the

partition of WK × EK corresponding to GK . Then,
Lemma 1 guarantees that (20) yields

PW KEK

{
(WK , EK) ∈ R(K)

0

}
→ 1 as K → ∞. (89)

Let T (K) be the set defined in (43). Since T (K) satisfies
(42), combination of (89) and (42) gives rise to

PW KEK

{
(WK , EK) ∈ R(K)

0 ∩ T (K)
}
→ 1 (90)

as K → ∞. That is, (90) guarantees that for any η ∈
(0, 1) there exists an integer K1 = K1(η) satisfying∑
wK∈T

(K)
W

PW K (wK)

·
∑

eK∈R(K)
0 (wK)∩T

(K)
E|W (wK)

PEK |W K (eK |wK) ≥ 1− η (91)
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for all K ≥ K1, where T
(K)
W and T (K)

E|W (wK) are the sets

defined in (38) and (39), respectively, and R(K)
0 (wK) is

defined as

R(K)
0 (wK) def=

{
eK ∈ EK : (wK , eK) ∈ R(K)

0

}
.

Furthermore, the inner sum in (91) is supposed to be
zero if R(K)

0 (wK) ∩ T
(K)
E|W (wK) = φ for wK ∈ T

(K)
W .

It is important to note that (91) yields∑
wK∈U(K)

PW K (wK) ≥ 1− η for all K ≥ K1, (92)

where

U (K) def=
{
wK ∈ T

(K)
W :

R(K)
0 (wK) ∩ T

(K)
E|W (wK) �= φ

}
. (93)

A lower bound of P (K)
G is obtained in the following way:

P
(K)
G

1)
=

∑
wK∈WK

PW K (wK) ·

max
eK∈R(K)

0 (wK)

PEK |W K (eK |wK)

2)

≥
∑

wK∈U(K)

PW K (wK) ·

max
eK∈R(K)

0 (wK)

PEK |W K (eK |wK)

3)

≥
∑

wK∈U(K)

PW K (wK) ·

max
eK∈R(K)

0 (wK)∩T
(K)
E|W (wK)

PEK |W K (eK |wK), (94)

where the marked equality and inequalities in (94) fol-
low from

1): the definition of P (K)
G ,

2): U (K) ⊂ WK ,
3): R(K)

0 (wK) ∩ T
(K)
E|W (wK) ⊆ R(K)

0 (wK) for all wK ∈
U (K).

Since (45) implies that

PEK |W K (eK |wK) = 2−KH(E|W )+o(K) (95)

for all wK ∈ T
(K)
W and eK ∈ T

(K)
E|W (wK), (94) yields

P
(K)
G ≥

∑
wK∈U(K)

PW K (wK) · 2−KH(E|W )+o(K)

≥ (1− η) · 2−KH(E|W )+o(K) (96)

for all K ≥ K1, where the last inequality is obtained
from (92). Inequality (96) implies that for any δ > 0
there exists an integer K2 = K2(η, δ) satisfying

− 1
K

log2 P
(K)
G ≤ H(E|W ) + δ for all K ≥ K2,(97)

which establishes (21). ✷
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Appendix: Proofs of Lemma 2 and Lemma 3

Proof of Lemma 2:

Let A(K)
T be the set defined in (61) and denote by A(K)

T

the complement of A(K)
T . For an arbitrarily fixed QW ∈

A(K)
T , the probability that WK belongs to WK(QW ) is

evaluated in the following way:

PW K

{
WK ∈ WK(QW )

}
=

∑
wK∈WK(QW )

PW K (wK)

1)
= |WK(QW )| · 2−K[H(QW )+D(QW ||PW )]

2)

≤ 2−KD(QW ||PW ), (A· 1)

where the marked equality and inequality in (A· 1) are
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obtained since

1): equality (30) holds for all wK ∈ WK(QW ),
2): inequality (28) holds for type QW .

Since A(K) is the union of WK(QW ) for QW ∈
A(K)

T , the left hand side of (52) is bounded in the fol-
lowing manner:

PW K

{
WK ∈ A(K)

} 3)

≤
∑

QW ∈A(K)
T

2−KD(QW ||PW )

4)

≤ (K + 1)|W| · exp2
[
−K min

QW ∈A(K)
T

D(QW ||PW )
]

5)

≤ (K + 1)|W| · 2−Kθ, (A· 2)

where exp2[t] = 2t and the marked inequalities in (A· 2)
are obtained from

3): inequality (A· 1),
4): inequality (26),

5): the definition of A(K)
T . ✷

Proof of Lemma 3:
The proof of this lemma is essentially the same as
the proof of Lemma 2. Fix QW ∈ T (K)

W and wK ∈
WK(QW ) arbitrarily and define B(K)

T (QW ) by (62).

Denote by B(K)
T (QW ) the complement of B(K)

T (QW ).

For any QE|W ∈ B(K)
T (QW ) it is easy to check that

PEK |W K

{
EK ∈ EK(QE|W |wK)

∣∣ wK
}

1)
= |EK(QE|W |wK)|

· 2−K[H(QE|W |QW )+D(QE|W ||PE|W |QW )]

2)

≤ 2−KD(QE|W ||PE|W |QW ), (A· 3)

where the marked equality and inequality in (A· 3) are
obtained since

1): equation (37) holds for all eK ∈ EK(QE|W |wK),
2): inequality (35) holds for QE|W ∈ T (K)

E|W .

By combining

B(K)(wK) =
⋃

QE|W ∈B(K)
T

(QW )

EK(QE|W |wK)

with (A· 3), the left hand side of (A· 3) can be bounded
in the following manner:

PEK |W K

{
EK ∈ B(K)(wK)

∣∣ wK
}

3)

≤
∑

QE|W ∈B(K)
T

(wK)

2−KD(QE|W ||PE|W |QW )

4)

≤ (K + 1)|W||E|

· exp2
[
−K min

QE|W ∈B(K)
T

(QW )

D(QE|W ||PE|W |QW )
]

5)

≤ (K + 1)|W||E| · 2−Kθ, (A· 4)

where the marked inequalities in (A· 4) hold because of

3): inequality (A· 3),
4): inequality (33),

5): the definition of B(K)
T (QW ). ✷

Hiroki Koga was born in Fukuoka,
Japan, on November 2, 1967. He re-
ceived the B.E., M.E. and Dr.E. degrees
from The University of Tokyo, Japan, in
1990, 1992 and 1995, respectively. He was
an Assistant Professor at The University
of Tokyo during 1995–1999. From April
1999 he is a lecturer at Institute of Engi-
neering Mechanics and Systems, Univer-
sity of Tsukuba. His research interest in-
cludes the Shannon theory, data compres-

sion and information security.

Hirosuke Yamamoto was born
in Wakayama, Japan, on November 15,
1952. He received the B.E. degree from
Shizuoka University, Shizuoka, Japan, in
1975 and the M.E. and Dr.E. degrees
from The University of Tokyo, Tokyo,
Japan, in 1977 and 1980, respectively,
all in electrical engineering. In 1980 he
joined Tokushima University, Tokushima,
Japan. He was an Associate Professor
at Tokushima University, University of

Electro-Communications, and The University of Tokyo, during
1983–1987, 1987–1993, and 1993–1999, respectively. Since March
1999, he is a professor in the Department of Mathematical Engi-
neering and Information Physics, Graduate School of Engineer-
ing, The University of Tokyo. In 1989–1990, he was a Visiting
Scholar at the Information Systems Laboratory, Stanford Univer-
sity. His research interests are in Shannon theory, coding theory,
cryptology, and communication theory.


