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for Plural Secret Images∗
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SUMMARY In this paper, a new method is proposed to con-
struct a visual secret sharing scheme with a general access struc-
ture for plural secret images. Although the proposed scheme can
be considered as an extension of Droste’s method that can encode
only black-white images, it can encode plural gray-scale and/or
color secret images.
key words: visual secret sharing schemes, plural secret images,
general access structures

1. Introduction

The visual secret sharing scheme (VSS scheme), which
originates from the visual cryptography proposed by
Naor and Shamir [14], is a method to encode a secret
image into several shares. Since each share is usually
printed on a transparency, the secret image can easily
be decrypted only by peering at several shares stacked
in an arbitrary order. Hence, the VSS scheme needs no
computation in decryption.

The first VSS scheme [14] is the (k, n)-threshold
scheme for a monotone black-white single image. The
(k, n)-threshold scheme means that any k out of n
shares can decrypt the secret, but any k − 1 or less
shares must not leak out any information of the secret.
The (k, n) structure can be extended to a general access
structure which is specified by qualified sets and forbid-
den sets [1]. A qualified set is a subset of n shares that
can decrypt the secret image while a forbidden set is a
subset of shares that can gain no information of the se-
cret image. Furthermore, VSS schemes for black-white
images [1], [4], [5], [14] are extended to gray-scale images
[3], [7], [9] and color images [9], [10], [16] in the case of
general access structures, and the quality optimizations
of decrypted images are discussed in [1], [3]–[5], [7], [10],
[12], [15], [16].

VSS schemes for plural secret images are also stud-
ied [5], [8], [15]. Kato-Imai [8] proposed a method to re-
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produce different secret images as the number of shares
is increased, and Suga et al. [15] treated VSS schemes
for plural secret images and some access structures
which can be represented by a graph. Furthermore,
Droste [5] showed a method to decrypt different black-
white secret images for every subset of n shares. How-
ever, VSS schemes for plural gray-scale or color secret
images have not yet been studied.

In this paper, we propose a method to construct
a VSS scheme for q plural images, a VSS-q-PI scheme
for short, which can treat color and/or gray-scale im-
ages. In the framework of the VSS-q-PI scheme, we as-
sume that each participant holds one share, and hence,
usual VSS schemes for one secret image can be treated
as the VSS-1-PI schemes. Note that it is difficult to
realize the VSS-q-PI schemes, compared with the VSS-
1-PI schemes, because each pixel of plural secret im-
ages must be encoded under the condition that any
decrypted images must not leak out any informations
of the other secret images. In fact, as we will show
in Sect. 2.3, decrypted images of VSS-q-PI schemes
treated in [8], [15] leak out some information of the
other secret images. But, defining the correct secu-
rity conditions of VSS-q-PI schemes, we clarify the con-
struction method of VSS-q-PI schemes that attains per-
fectly the security conditions without degenerating the
quality of decrypted images compared with the meth-
ods in [8], [15].

This paper is organized as follows. In Sect. 2, the
access structures of the VSS-q-PI schemes are formally
defined, and a color matrix is introduced to describe
the colors of plural secret images. Section 3 is de-
voted to show how to construct the VSS-q-PI schemes.
Furthermore, in Sect. 4, we discuss an extended con-
struction method by duplicating secret images, which
can extend the range of the VSS-q-PI schemes that our
method can be applied to. Finally, in Sect. 5, we con-
sider what advantages of the VSS-q-PI schemes have
compared with trivial schemes consisting of q individ-
ual VSS-1-PI schemes.

2. Definitions

2.1 Access Structures

Let N = {1, 2, . . . , n} and 2N be the set of n shares
and the family of all the subsets of N , respectively.
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We suppose that all secret images are encrypted at
once into n shares. Each secret image is denoted by
SI(i), i = 1, 2, . . . , q, which has the same size. Let
Γ(i)Qual, i = 1, 2, . . . , q, be the family of qualified sets
for the i-th secret image, and let ΓForb be the family
of forbidden sets. Then, any set in Γ(i)Qual can decrypt
the i-th secret image SI(i) while any set in ΓForb can-
not gain any information of any secret image. We call
Γ = ({Γ(i)Qual}

q
i=1,ΓForb) an access structure for q secret

images.
Note that each Γ(i)Qual and ΓForb satisfy the following

monotonicity.

Q(i) ∈ Γ(i)Qual ⇒ Q′ ∈ Γ(i)Qual for any Q′ ⊇ Q(i) (1)

F ∈ ΓForb ⇒ F ′ ∈ ΓForb for any F ′ ⊆ F (2)

Therefore, for each Γ(i)Qual and ΓForb, the minimal quali-

fied sets of the i-th secret image Γ(i)−Qual and the maximal
forbidden sets Γ+Forb can be defined as follows.

Γ(i)−Qual = {Q(i) ∈ Γ(i)Qual : Q′ �∈ Γ(i)Qual for any Q′ � Q(i)}
(3)

Γ+Forb = {F ∈ ΓForb : F ′ �∈ ΓForb for any F ′ � F} (4)

Γ(i)−Qual and ΓForb are naturally required to satisfy{
q⋃

i=1

Γ(i)Qual

}
∪ ΓForb = 2N , (5)

Γ(i)Qual ∩ ΓForb = ∅, (6)

Γ(i)−Qual ∩ Γ(i
′)−

Qual = ∅ for i �= i′. (7)

The requirement Eq. (7) comes from the assump-
tion that all the secret images are different. It is worth
noting that the VSS-1-PI scheme with the access struc-
ture (Γ(1)Qual,ΓForb) coincides with the usual VSS scheme
with the same access structure for one secret image,
which is treated in [1], [3], [4], [10].

We also define N (i), the set of significant shares
for the i-th secret image, as follows.

N (i) =
⋃

Q(i)−∈Γ(i)−
Qual

Q(i)−. (8)

Example 1: Let N = {1, 2, 3, 4} be the set of shares.
Suppose that any two out of three shares {1, 2, 3} can
decrypt the secret image SI(1) shown in Fig. 1(a), and
set {3, 4} can decrypt the secret image SI(2) shown in
Fig. 1(b). But, set {1, 4}, {2, 4} or any one share must
not leak out any information of both secret images.
This access structure can be represented as follows.

Γ(1)Qual = {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3},
{1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}} (9)

Γ(2)Qual = {{3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}} (10)

(a) SI(1). (b) SI(2).

(c) Location of shapes in (a) and (b).

Fig. 1 An example of plural secret images.

ΓForb = {{1}, {2}, {3}, {4}, {1, 4}, {2, 4}} (11)

In this case, it holds that Γ(1)−Qual = {{1, 2}, {1, 3}, {2, 3}},

Γ(2)−Qual = {{3, 4}}, Γ+Forb = {{3}, {1, 4}, {2, 4}}, N (1) =
{1, 2, 3}, N (2) = {3, 4}. Note that set {1, 2, 3} must not
leak out any information of SI(2) because of {1, 2, 3} �∈
Γ(2)Qual, although it can decrypt SI(1). ✷

2.2 Color Matrix

In this paper, colors are expressed by lowercase san-
serif fonts. For example, we denote black, red, green,
blue, yellow, magenta, cyan, and white by z, r, g, b, y,
m, c and a, respectively. A general color is expressed
by k.

Let � represent the subtractive mixture of colors
which corresponds to overlapping the colors printed
on transparencies. Then, z � g = g � z = z, and
c � y = y � c = g hold, for example. Let color set E
be the set of both the colors printed on shares and the
mixtures of such colors. Note that � is commutative
in E and E is closed with respect to �. In the case
of E = {z, r, g, b, y,m, c, a}, it is known that E forms a
bounded upper semilattice with the join operation �
[9].

In the VSS-q-PI scheme, a pixel on a decrypted
secret image DI(i), which corresponds to a secret image
SI(i), is constructed by a set of m subpixels where m is
called pixel expansion and each subpixel takes a color in
E . We consider the case that every subpixel in a pixel
takes the same color k or black z for some k in E . Then,
the brightness of a pixel in DI(i) can be expressed by
the composition ratio of k and z.

We express the colors of pixels in DI(i) by capital
san-serif fonts K�, � = 1, 2 . . . , Lk, which is composed
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of k( �= z) and z and stands for the �-th bright color of
k. We assume that K�1 is brighter than K�2 , i.e., K�1

contains more k than K�2 if �1 > �2. In the case that
all subpixels in a decrypted pixel are z, we represent
the pixel color by Z. For the simplicity of notation,
we define K0 = Z for any k ∈ E . Note that K1 �= Z
for any k( �= z) ∈ E , and in the case of k = a, the set
{A0(= Z),A1,A2, . . . ,ALa

} represents a gray scale with
La + 1 depths [3], [7].

For a set {K0(= Z),K1,K2, . . . ,KLk
}, let dk,� de-

note the difference of the numbers of k between K� and
K�+1. In case of k = z, define that dz,0 = 0. Note that
dk,� � 1 for any k �= z and � � 0. Then we assume that
the color of each pixel on SI(i) can be approximated by
selecting a color k ∈ E and parameter dk,� adequately,
and hence, there exists one-to-one correspondence be-
tween the set of colors of SI(i) and that of DI(i).

Let D(i) be the set of all the colors with all kinds
of brightness included in the decrypted image DI(i).
Then, for K� and Z ∈ D(i), we can define mapping
γ : D(i) → E that gives the hue γ(K�) = k ∈ E and
γ(Z) = z.

Remark 1: The above definition of decrypted pixel
colors includes both the definition for the lattice-
based VSS schemes [9], [10], [12] and the gray-scale VSS
schemes [3], [7]. On the other hand, the meanvalue-
color mixing (MCM)-VSS scheme [13], [16] cannot be
treated by the above definition because in the MCM-
VSS scheme, each pixel on decrypted images is com-
posed of the three primary colors (r, g, b) and z. But,
since the MCM-VSS schemes requires large pixel ex-
pansion, it seems to be hard to realize a VSS scheme
for a general access structure with n � 3. ✷

Now we define a color matrix. Let D be D = D(1)×
D(2)×· · ·×D(q). Then, in the VSS-q-PI scheme, all the
combinations of colors appeared in decrypted images
can be represented by a color matrix D which is defined
as follows.

D =
[

c1 c2 · · · cK
]

=




D(1),1 D(1),2 · · · D(1),K

D(2),1 D(2),2 · · · D(2),K

...
...

. . .
...

D(q),1 D(q),2 · · · D(q),K


 =




r(1)

r(2)

...
r(q)


 ,
(12)

where K =
∏q

i=1 |D(i)|, cj ∈ D and r(i) are a q-
dimensional column vector and a K-dimensional row
vector, respectively, and D(i),j is a color included in
D(i).

We assume that D is public. In the usual VSS
schemes, i.e., VSS-1-PI schemes, D becomes a row vec-
tor with cj = D(1),j ∈ D(1). Although one color D(1),j is
encrypted for each pixel in the VSS-1-PI schemes, color
vector cj with q colors must be encrypted for each pixel

in the VSS-q-PI schemes.

Example 2: In the case of Example 1 with two se-
cret images SI(1) and SI(2) shown in Figs. 1(a) and
(b), D(1) and D(2) are given by D(1) = {G1,G2} and
D(2) = {Y1,R1}, respectively, and hence the color ma-
trix becomes

D =
[

c1 c2 c3 c4
]

=
[

G1G2G1G2
Y1Y1R1R1

]
=
[

r(1)

r(2)

]
.

(13)

Note that D(1) consists of green pixels with two levels of
brightness while D(2) consists of yellow and red pixels.

✷

Remark 2: Consider the case that the shapes in
Figs. 1(a) and (b) are located as shown in Fig. 1(c).
There are three regions in Fig. 1(c), which correspond
to the column vectors c2, c3 and c4 in D. But the color
matrix D should be composed of four column vectors
c1, c2, c3, and c4 because of K = 4. Note that if the
public D consists of c2, c3 and c4, we can know from
DI(2) that the color of the region c2 shown in Fig. 1(c)
is G2 on DI(1) because Y1 on DI(2) corresponds only
to G2 on DI(1). Therefore, all vectors in D must be
included in D even if some vectors are not appeared in
the secret images. ✷

2.3 Definition of VSS-q-PI Scheme

Pixel expansion m, which is the number of subpixels
necessary to represent one pixel, should be as small as
possible in the viewpoint of the resolution of decrypted
images. We encrypt each cj into an n×m matrix T j =
[tjuv] ∈ Enm where tjuv ∈ E , 1 � u � n, 1 � v � m,
denotes the color of the v-th subpixel on the u-th share
in a pixel represented by the vector cj .

We introduce an equivalence relation ∼ into ma-
trices in Enm. For two matrices A,B ∈ Enm, A ∼ B
means that A can be obtained by the column permu-
tation of B. In other words, it holds that for any per-
mutation σ : {1, 2, . . . ,m} → {1, 2, . . . ,m},

[a1a2 · · ·am] ∼ [aσ(1)aσ(2) · · ·aσ(m)], (14)

where ai’s are column vectors of a matrix A ∈ Enm.
It is easy to check that this relation satisfies the three
conditions of the equivalence relation, i.e., the reflective
law, the symmetric law, and the transitive law. Hence
we can consider the quotient set Enm/∼, which consists
of the equivalence classes. An equivalence class is rep-
resented as 〈R〉 by a representative R in the class.

For two matrices X ∈ Enm1 and Y ∈ Enm2 , we
define the concatenation operation X�Y ∈ En(m1+m2)

by, for example,
aaa

aaa
aaa


�


zz

zz
zz


 =


aaazz

aaazz
aaazz


 . (15)
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Furthermore, we can define naturally that 〈X〉�〈Y 〉 def=
〈X � Y 〉.

For m-dimensional row vectors of colors x =
[ x1 x2 · · · xm ], y = [ y1 y2 · · · ym ] where xi, yi ∈ E , we
define an operation

m
� as

x
m
� y = [ x1 � y1 x2 � y2 · · · xm � ym ], (16)

which represents the subtractive mixtures of two pixels
with m subpixels. For a matrix S = t[x1x2 · · ·xn] ∈
Enm, where t means the transpose of the matrix, and
an arbitrary set X = {u1, u2, . . . , ur} ⊆ N , an |X | ×m
matrix S[[X ]] is defined as S[[X ]] = t[xu1xu2 · · ·xur

] ∈
E |X |m. Then, the colors obtained by stacking the ui-th
shares, i = 1, 2, . . . , r, are represented by the mapping
β : E |X |m → Em defined by

β(S[[X ]]) = xu1

m
� xu2

m
� · · ·

m
� xur

. (17)

For a given set X ⊆ N , the set of indices of the
secret images that can be decrypted from X , say I(X ),
is represented as

I(X ) =
{
i : X ∈ Γ(i)Qual, 1 � i � q

}
. (18)

For instance, I(N ) = {1, 2, . . . , q}, and I(F) = ∅ for
any F ∈ ΓForb.

Now we define the VSS-q-PI scheme for a general
access structure Γ.

Definition 1: A VSS-q-PI scheme for an access struc-
ture Γ is called a (Γ,N , E ,D)-VSS-q-PI scheme if it
has color matrix D for color set E , and for every
j ∈ {1, 2, . . . ,K} each pixel associated with cj is deter-
mined by a matrix T j randomly selected from 〈Bj〉 ∈
Enm/∼, where Bj is the basis matrix of the secret image
SI(i) that must satisfy the following conditions:

(i) It holds for any Bj and any Q(i)− ∈ Γ(i)−Qual that

β
(
Bj
[[
Q(i)−

]])
∼
[
γ
(
D(i),j

)
γ
(
D(i),j

)
· · · γ

(
D(i),j

)
z z · · · z

]
.

(19)

In the case that Bj [[Q(i)−]] represents K� for � � 1,
k = γ

(
D(i),j

)
appears

∑�−1
l=0 d

(i)
k,l times in Eq. (19).

Note that d(i)k,� may depend on DI(i) and k, but not
on j. In the case of � = 0, the right hand side of
Eq. (19) consists of only z’s.

(ii) For any set X ⊆ N , it holds that Bj [[X ]] ∼ Bj′
[[X ]]

for any j and j′( �= j) satisfying cj [[I(X )]] =
cj′

[[I(X )]]†. ✷

Example 3: In the VSS-2-PI scheme treated in Ex-
amples 1 and 2, the basis matrices B1, B2, B3 and B4

are given by

B1 =




zggzzz
gzgzzz
ggzyrz
zzzyzr


 , B2 =




zggzzz
zggzzz
zggyrz
zzzyzr


 ,

B3 =




zggzzz
gzgzzz
ggzryz
zzzrzy


 , B4 =




zggzzz
zggzzz
zggryz
zzzrzy


 . (20)

It is easy to check that Eq. (20) satisfies the condi-
tions (i) and (ii) in Def.1. For example, it holds for
{1, 2} ∈ Γ(1)−Qual that β

(
B3[[{1, 2}]]

)
∼ [gzzzzz], and

β
(
B4[[{1, 2}]]

)
∼ [ggzzzz], d(1)g,0 = 1 and d

(1)
g,1 = 1. These

relations mean that B3 and B4 represent G1 and G2 on
DI(1), respectively. Furthermore, it holds for {3, 4} ∈
Γ(2)−Qual that β

(
B2[[{3, 4}]]

)
∼ [yzzzzz], β

(
B4[[{3, 4}]]

)
∼

[rzzzzz], d(2)y,0 = d
(2)
r,0 = 1, which mean that B2 and B4

represent Y1 and R1 on DI(2), respectively.
It holds that for X123 = {1, 2, 3}, B1[[X123]] ∼

B3[[X123]] and B2[[X123]] ∼ B4[[X123]], i.e., X123 does
not leak out the colors of pixels on DI(2). Hence,
the basis matrices given by Eq. (20) attains that both
X123 ∈ Γ(1)Qual and X123 �∈ Γ(2)Qual. Furthermore, it can eas-
ily be checked that B1[[F ]] ∼ B2[[F ]] ∼ B3[[F ]] ∼ B4[[F ]]
for any F ∈ ΓForb. ✷

Remark 3: The condition (i) in Def.1 means that any
Q(i)− ∈ Γ(i)−Qual can decrypt the secret image SI(i). But,
SI(i) cannot always be decrypted by stacking all the
shares included in Q(i) ∈ Γ(i)Qual. For instance, in Ex-
ample 3, β(Bj [[N ]]) ∼ [zzzzzz] for all j, which does not
satisfy the condition (i) in Def.1, although N ∈ Γ(1)Qual

and N ∈ Γ(2)Qual. We must select a set Q(i)− included in
Q(i) to decrypt SI(i). ✷

Note that F ∈ ΓForb satisfies the following condi-
tion from I(F) = ∅ and Eq. (6).

(ii)′ For any F ∈ ΓForb, all Bj [[F ]], j = 1, 2, . . . ,K, are
included in the same equivalence class in Enm/∼.

In the case of the VSS-1-PI scheme, any X (⊆ N )
satisfies either X ∈ Γ(1)Qual or X ∈ ΓForb since the ac-

cess structure has only two categories Γ(1)Qual and ΓForb.
Hence, in this case, it suffices to consider only the con-
ditions (i) and (ii)′, which coincide with the conditions
described in [1], [3], [10] by slight modifications. Based
on this consideration, the VSS-q-PI scheme is defined
by (i), (ii)′ in [8], [15]. However, the conditions (i) and
(ii)′ are not sufficient for q � 2 because as shown in the

†cj [[I(X )]] = t[D(i1),j D(i2),j · · ·D(ir),j ] if I(X ) =

{i1, i2, . . . , ir}. cj [[∅]] = cj′ [[∅]] for any j and j′.
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following example, the condition (ii)′ does not guaran-
tee that any X �∈ Γ(i)Qual does not leak out any informa-

tion of the secret image SI(i) even if X ∈ Γ(i
′)

Qual for some
other secret image SI(i

′).

Example 4: Consider the access structure given by
Eqs. (9)–(11) in Example 1 again. Then, the matrices
B̃1, B̃2, B̃3, and B̃4 defined by Eq. (21) satisfy condi-
tions (i) and (ii)′.

B̃1 =




ggzzzzz
gzgzzzz
zggzyrz
zzzzyzr


 , B̃2 =




zzggzzz
zzggzzz
zzggyrz
zzzzyzr


 ,

B̃3 =




zzggzzz
zgzgzzz
gzzgryz
zzzzrzy


 , B̃4 =



zzggzzz
zzggzzz
zzggryz
zzzzrzy


 . (21)

Note that X12 = {1, 2}, X13 = {1, 3}, X23 = {2, 3},
X123 = {1, 2, 3} are not included in Γ(2)Qual. The above
matrices satisfy that

B̃1[[X12]] ∼ B̃3[[X12]], B̃2[[X12]] ∼ B̃4[[X12]],
B̃1[[X13]] ∼ B̃3[[X13]], B̃2[[X13]] ∼ B̃4[[X13]],
B̃1[[X23]] ∼ B̃3[[X23]], B̃2[[X23]] ∼ B̃4[[X23]]. (22)

Hence, any one of X12, X13, X23 does not leak out any
information about DI(2). But, it holds that B̃1[[X123]] �∼
B̃3[[X123]], β(B̃1[[X123]]) ∼ [zzzzzz] and β(B̃3[[X123]]) ∼
[gzzzzz]. This means that for pixels with G1 on DI(1),
we can distinguish yellow pixels from red pixels on
DI(2), which correspond to B̃1 and B̃3, respectively,
by investigating the shares of X123. Hence, the matri-
ces given by Eq. (21) are inadequate for the basis ma-
trices. On the contrary, the basis matrices B1, B2, B3

and B4 given by Eq. (20) satisfy B1[[X123]] ∼ B3[[X123]]
and B2[[X123]] ∼ B4[[X123]]. ✷

3. Construction Method of VSS-q-PI Scheme

3.1 Construction Method

In this subsection, we describe a method to construct
the (Γ,N , E ,D)-VSS-q-PI scheme.

First, for a given access structure Γ, define Γ̃(i)Qual

and Γ̃(i)Forb as follows.

Γ̃(i)Qual = {Q(i) ∈ Γ(i)Qual : Q(i) ⊆ N (i)}, (23)

Γ̃(i)Forb = {F ⊂ N (i) : F �∈ Γ(i)Qual}. (24)

It is easy to check that Γ̃(i)Qual∩ Γ̃(i)Forb = ∅, Γ̃(i)Qual∪ Γ̃(i)Forb =

2N
(i)

, Γ̃(i)Qual and Γ̃(i)Forb have the monotonicity in the

same way as Γ(i)Qual and ΓForb, respectively. Therefore,

Γ(i) = (Γ̃(i)Qual, Γ̃
(i)
Forb) can be considered as an access

structure of the VSS-1-PI scheme with the secret im-
age SI(i) for the share set N (i). Then, letting E(i) be
the set of colors necessary to encrypt SI(i), the basis
matrices of the (Γ(i),N (i), E(i), r(i))-VSS-1-PI scheme
can be constructed by the known methods proposed in
[1], [3], [6], [7], [9]–[12] with slight modifications. See the
Appendix for more details. In such construction, let-
ting |N (i)| × m(i) matrices U (i),j , for j = 1, 2, . . . ,K,
be the basis matrices of the (Γ(i),N (i), E(i), r(i))-VSS-
1-PI scheme, where m(i) is the pixel expansion for the
secret image SI(i), then U (i),j represents a color D(i),j

and satisfies that U (i),j = U (i),j
′

if D(i),j and D(i),j
′

are the same color. Furthermore, the basis matrix
U (i),j satisfies conditions (i), (ii)′, i.e., the number of
γ(D(i),j) included in β(U (i),j [[Q(i)−]]),

∑�−1
l=0 d

(i)

γ(D(i),j),l
,

is constant for any Q(i)− ∈ Γ(i)−Qual , and it holds that
U (i),1[[F (i)]] ∼ U (i),2[[F (i)]] ∼ · · · ∼ U (i),K [[F (i)]] for any
F (i) ∈ Γ(i)Forb.

Next, we construct an n×m(i) matrix V (i),j defined
by

V (i),j
[[
N (i)

]]
= U (i),j , (25)

V (i),j
[[
N (i)

]]
= J, (26)

where the matrix J consists of only z’s and N (i) means
the complement set of N (i) on N . Then we construct
n×m basis matrices Bj , j = 1, 2, . . . ,K, by

Bj =
q⊙

i=1

V (i),j , (27)

where m =
∑q

i=1m
(i).

We now consider two categories ∆1 and ∆2 for the
access structures of the VSS-q-PI schemes.

Definition 2:

(i) An access structure Γ is in ∆1 if it satisfies Q(i)−∩
N (i′) �= ∅ for any i and i′ such that Q(i)− ∈ Γ(i)−Qual

and i′ ∈ I(Q(i)−)\{i}.
(ii) An access structure Γ is in ∆2 if it satisfies that

Q(i)− ∩ N (i′) �= ∅ for any i and i′( �= i). ✷

Remark 4: It is obvious from the above definition
that ∆2 ⊂ ∆1, and it holds generally that ∆2 � ∆1.
Furthermore, there exist access structures that are not
included in ∆1. ✷

Example 5: Assume that an access structure ΓID is
defined by

ΓForb = {{2}}, (28)

Γ(1)−Qual = {{1}}, (29)
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Γ(2)−Qual = {{1, 2}}. (30)

Then, ΓID does not belong to ∆1, and hence, nor ∆2.
From Eq. (29), the secret image SI(1) can be obtained
only from share 1. Hence, SI(1) can be considered as
the identification (ID) image of share 1 although SI(2)

is the secret image. The above access structure ΓID

is a modified version of the (2, 2)-VSS scheme with two
ID images [2], [12], and note that the VSS-q-PI schemes
include such VSS schemes with ID images as a special
case.

Next, consider the access structure Γg treated in
[15], which is given by

ΓForb = {{1}, {2}, {3}, {4}, {5}}, (31)

Γ(1)−Qual = {{1, 2}, {1, 5}, {2, 3}, {3, 4}, {4, 5}}, (32)

Γ(2)−Qual = {{1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}}. (33)

Then, Γg is included in ∆1 but not in ∆2. ✷

Theorem 1: Bj , j = 1, 2, . . . ,K, given by Eq. (27)
are the basis matrices of the (Γ,N , E ,D)-VSS-q-PI
scheme, if |E| = 2 and Γ ∈ ∆1, or if |E| � 3 and Γ ∈ ∆2.

✷

Example 6: We show how the basis matrices given
by Eq. (20) can be derived from Theorem 1 for the ac-
cess structures Γ given by Eqs. (9)–(11) in Example 1
and the color matrix D given by Eq. (13) in Example
2. Note that the access structure Γ belongs to ∆2.
From Eqs. (23), (24), we have Γ̃(1)Forb = {{1}, {2}, {3}}
and Γ̃(2)Forb = {{3}, {4}}. Then the basis matrices
U (i),j of (Γ(1),N (1), E(1), r(1))-VSS-1-PI scheme and
(Γ(2),N (2), E(2), r(2))-VSS-1-PI scheme are given by

U (1),1 = U (1),3 =


zbb

bzb
bbz


 , U (1),2 = U (1),4 =


zbb

zbb
zbb


 ,

and

U (2),1 = U (2),2 =
[
yzr
yrz

]
, U (2),3 = U (2),4 =

[
ryz
rzy

]
,

(34)

respectively. Hence we obtain from Eqs. (25), (26) that

V (1),1 = V (1),3 =




zbb
zbb
zbb
zzz


 , V (1),2 = V (1),4 =




zbb
bzb
bbz
zzz


 ,

V (2),1 = V (2),2 =




zzz
zzz
ryz
rzy


 , V (2),3 = V (2),4 =




zzz
zzz
yzr
yrz


 .
(35)

Finally, basis matrices B1, B2, B3 and B4 are given
from Eq. (27) as follows.

B1 = V (1),1 � V (2),1, B2 = V (1),2 � V (2),2,

B3 = V (1),3 � V (2),3, B4 = V (1),4 � V (2),4, (36)

which is equivalent to Eq. (20). ✷

Remark 5: In [15], it is shown that the access struc-
ture Γg given by Eqs. (31)–(33) in Example 5 can be
represented by a graph. In the case of |E| = 2, as
treated in [15], Eq. (27) gives the basis matrices. But
in the case of |E| � 3, Eq. (27) does not give the basis
matrices for Γg generally because Γg does not satisfy
the condition of Theorem 1, i.e., Γg �∈ ∆2. ✷

3.2 Proof of Theorem 1

In this subsection, we prove Theorem 1. We first show
that matrices V (i),j given by Eqs. (25), (26) satisfy the
next lemma.

Lemma 1: For any i �∈ I(X ), it holds that

V (i),1[[X ]] ∼ V (i),2[[X ]] ∼ · · · ∼ V (i),K [[X ]]. (37)

✷

Proof of Lemma 1: From Eq. (18), we note that
X ∈ Γ̃(i)Forb if i �∈ I(X ). Hence, from the monotonicity
of Γ̃(i)Forb, it holds that X ∩N (i) ∈ Γ̃(i)Forb for i �∈ I(X ).

V (i),j [[X ]] can be represented as

V (i),j [[X ]] = V (i),j
[[(

X ∩N (i)
)
∪
(
X ∩N (i)

)]]
. (38)

In Eq. (38), it holds for i �∈ I(X ) that V (i),1[[X ∩
N (i)]] ∼ V (i),2[[X ∩ N (i)]] ∼ · · · ∼ V (i),K [[X ∩ N (i)]]
since V (i),j [[N (i)]] satisfies Eq. (25) and X∩N (i) ∈ Γ̃(i)Forb.
On the other hand, from Eq. (26), all the elements of
V (i),j [[X ∩ N (i)]] are z for every j. Therefore, Eq. (37)
holds for any i �∈ I(X ). ✷

Proof of Theorem 1: First, we show that Bj given
by Eq. (27) satisfies the condition (i) in Def.1. Substi-
tuting Eq. (27) into β(Bj [[Q(i)−]]), we have

β
(
Bj [[Q(i)−]]

)
= β

(
q⊙

i′=1

V (i
′),j [[Q(i)−]]

)

∼ β(V (i),j [[Q(i)−]]) � β


 q⊙

i′=1
i′ �=i

V (i
′),j [[Q(i)−]]




∼ β(U (i),j [[Q(i)−]]) � β(X(i),j) � β(Y (i),j), (39)

where X(i),j and Y (i),j are defined as

X(i),j =
⊙

i′∈I(Q(i)−)\{i}

V (i
′),j [[Q(i)−]], (40)
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Y (i),j =
⊙

i′ 
∈I(Q(i)−)

V (i
′),j [[Q(i)−]]. (41)

Note that since U (i),j is the basis matrix of
(Γ(i),N (i), E(i), r(i))-VSS-1-PI schemes, it satisfies the
condition (i) in Def.1 for the (Γ(i),N (i), E(i), r(i))-VSS-
1-PI scheme. First consider the case of |E| = 2 with E =
{z, k}. In this case, β(U (i),j), β(X(i),j), and β(Y (i),j)
are vectors with two colors, k and z. Hence, if for each
i, β(X(i),j)�β(Y (i),j) are equivalent with respect to ∼
for any j, Eq. (19) is satisfied for β(Bj [[Q(i)−]]). From
Lemma 1, we have that

V (i
′),1[[Q(i)−]] ∼ V (i

′),2[[Q(i)−]] ∼ · · · ∼ V (i
′),K [[Q(i)−]]

(42)

for any i′ �∈ I(Q(i)−). Hence, for each i, β(Y (i),j)
are equivalent for any j. Furthermore, for any i′ ∈
I(Q(i)−)\{i}, β(V (i

′),j [[Q(i)−]]) can be represented as

β(V (i
′),j [[Q(i)−]])

= β
(
V (i

′),j
[[(

Q(i)− ∩N (i′)
)
∪
(
Q(i)− ∩ N (i′)

)]])
.

(43)

Since Eq. (26) holds and we have that Q(i)−∩N (i′) �= ∅
for such i′ from the assumption Γ ∈ ∆1 in Theorem
1, β(V (i

′),j [[Q(i)−]]) consists of only z’s. Hence, all
β(X(i),j) are also equivalent for any j.

In the case of |E| � 3, β(X(i),j) and β(Y (i),j) may
have three or more colors, and hence Eq. (19) may not
be satisfied even if β(X(i),j) � β(Y (i),j) are equivalent
for any j. But, because for any i′ �= i, Q(i)− ∩ N (i′) �=
∅ in Eq. (43) holds from the assumption Γ ∈ ∆2 in
Theorem 1, all elements in β(X(i),j) � β(Y (i),j) are z
from Eq. (26). Hence, Eq. (19) holds for β(Bj [[Q(i)−]]).

Next, let us check that Bj ’s satisfy the condition
(ii) in Def.1. Bj [[X ]] can be represented as

Bj [[X ]] =
q⊙

i=1

V (i),j [[X ]]

∼


 ⊙

i∈I(X )
V (i),j [[X ]]


�


 ⊙

i 
∈I(X )
V (i),j [[X ]]


 .
(44)

Suppose for a set X ⊆ N that j and j′( �= j) sat-
isfy cj [[I(X )]] = cj′

[[I(X )]], which means that D(i),j =
D(i),j

′
for any i ∈ I(X ). Then, it holds that U (i),j =

U (i),j
′

from the definition of U (i),j , and hence V (i),j =
V (i),j

′
from Eqs. (25), (26). Furthermore, for any

i �∈ I(X ), it holds from Lemma 1 that V (i),1[[X ]] ∼
V (i),2[[X ]] ∼ · · · ∼ V (i),K [[X ]]. Therefore, it holds that
Bj [[X ]] ∼ Bj′

[[X ]]. ✷

4. Construction Method by Duplicating Secret
Images

In the previous sections, we have shown how to con-
struct the VSS-q-PI schemes for the case that the ac-
cess structures Γ are included in ∆1 or ∆2 for |E| = 2
or |E| � 3, respectively. In this section, we treat the
case that Γ is not included in ∆1 or ∆2.

In the previous sections, we assumed that all the
secret images are different. But we note that even if
some secret images are the same, we can encrypt the
plural secret images including the same images in the
same way as the case of all different secret images.

Suppose that an access structure Γ = ({Γ(i)Qual}
q
i=1,

ΓForb) is given, which may not be included in ∆1 nor
∆2. For this Γ, we consider the union of all Γ(i)−Qual .
Let us assume that the union has q̂ elements Q̂(i)−,
i = 1, 2, . . . , q̂, i.e.,

q⋃
i=1

Γ(i)−Qual = {Q̂(1)−, Q̂(2)−, . . . , Q̂(q̂)−}. (45)

Then, for each Q̂(i)−, we define Γ̂(i)−Qual by

Γ̂(i)−Qual = {Q̂(i)−} for 1 � i � q̂. (46)

For such {Γ̂(i)−Qual}
q̂
i=1, we can define a new access struc-

ture Γ̂ = ({Γ̂(i)Qual}
q̂
i=1,ΓForb) for the set of secret images,

ŜI
(i)

, i = 1, 2, . . . , q̂, some of which may be the same
image. Furthermore, we define the set of significant
shares N̂ (i) for ŜI

(i)
like Eq. (8), the set of colors D̂(i),

and the color matrix D̂.
Note that the forbidden sets of Γ̂ are the same as

Γ, and it holds that Q̂(i)− = N̂ (i) for all i.

Remark 6: In the case of ΓForb = {∅}, Γ̂ coincides
with the access structure proposed in [5] for black-white
plural secret images. Furthermore, applying Eqs. (45),
(46) to the access structure of VSS-1-PI scheme for a
black-white secret image, the basis matrix obtained by
Eq. (27) coincides with the basis matrix given in [4].

✷

Lemma 2: For the access structure Γ̂, the following
two statements hold.

1. For any i′ ∈ I(Q̂(i)−)\{i}, it holds that Q̂(i)− ∩
N̂ (i′) �= ∅.

2. If

I(Q̂(i)−) = {i}, (47)

then it holds that Q̂(i′)−∩N̂ (i) �= ∅ for any i′( �= i).
✷

Proof of Lemma 2: Note from the definition of
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Q̂(i)− that Q̂(i)− �= Q̂(i′)− for any i �= i′.

1. For any i′ ∈ I(Q̂(i)−)\{i}, it holds that Q̂(i)− �

Q̂(i′)− = N̂ (i′), which means that Q̂(i)−∩N̂ (i′) �= ∅.
2. Suppose that Q̂(i′)−∩N̂ (i) = Q̂(i′)−∩Q̂(i)− = ∅ for

some i′( �= i). Then we have that Q̂(i′)− � Q̂(i)−,
which implies that i′ ∈ I(Q̂(i)−)\{i} and violates
Eq. (47). ✷

From Lemma 2 and Theorem 1, the next theorem holds
for the access structure Γ̂.

Theorem 2: Suppose that the access structure Γ̂ is
constructed by Eqs. (45), (46) from Γ. Then, in the case
of |E| = 2, or in the case that |E| � 3 and Γ̂ satisfies
Eq. (47) for all i, the basis matrices of (Γ̂,N , E , D̂)-
VSS-q-PI scheme can be obtained by Eq. (27). ✷

Theorem 2 implies that the basis matrices of the
VSS-q-PI scheme with the access structure Γ̂ can al-
ways be constructed by Eq. (27) if |E| = 2. However,
in the case of |E| � 3, if the access structure requires
ID images, we cannot obtain the basis matrices of the
access structure from Eq. (27) because Q̂(i)− must re-
produce the ID image and the secret image, and hence,
Eq. (47) does not hold. The VSS scheme with color ID
images is proposed for |E| � 3 in [12], where the basis
matrices not satisfying Eq. (19) are used.

Finally, we note that for the construction shown
in the Appendix, pixel expansion m is given from
Eq. (A· 16) by

m =
q̂∑

i=1

m(i) =
q̂∑

i=1

∑
k∈E(i)

Lk−1∑
l=0

d
(i)
k,l 2|N̂

(i)|−1. (48)

For example, the pixel expansion of the VSS-2-PI
scheme with the access structure given by Eqs. (31)–
(33) for black-white secret images is 12 if the method
shown in Sect. 3 is used with the star graph decomposi-
tion [15]. But, if we use Eqs. (45), (46), we have q̂ = 10,
and the pixel expansion becomes 20 from Eq. (48). In
general, the pixel expansion attained by the method
shown in this section is larger than the method in
Sect. 3. However, it is reported that the VSS scheme
with 144(= 12 × 12) subpixels can be used [13], and
hence, it is not hard to use the VSS-2-PI with 20 sub-
pixels in practice.

5. Comparison with Trivial Schemes

In the framework of the VSS-q-PI scheme, we assume
that each participant has one share. But, in some cases
each participant may be allowed to have two or more
shares. In such cases, VSS schemes for q plural secret
images can easily be constructed by using q individ-
ual usual VSS schemes, i.e., VSS-1-PI schemes, with

the access structure Γ(i) = (Γ̃(i)Qual, Γ̃
(i)
Forb) for each se-

cret image SI(i). In such trivial VSS schemes, shares
{s(i)1 s

(i)
2 , . . . , s

(i)
n } are constructed for the i-th secret

image, and the �-th participant has the share set
{s(1)� , s

(2)
� , . . . , s

(q)
� }. In this section we compare the

VSS-q-PI schemes with such trivial schemes.
The trivial schemes can realize any access struc-

tures although the VSS-q-PI schemes cannot realize
them if they don’t satisfy the conditions described in
Theorems 1 or 2. Furthermore, the pixel expansion of
the trivial scheme is less than the VSS-q-PI scheme for
the same access structure. This means that the triv-
ial schemes attain higher resolution than the VSS-q-PI
schemes in decrypted images. However, in the trivial
schemes each participant must hold securely q plural
shares. On the contrary, each participant must hold
securely only one share in the VSS-q-PI scheme.

Furthermore, the VSS-q-PI schemes have the fol-
lowing advantages compared with the trivial schemes.

1. The VSS scheme with the ID images [2], [12], which
is considered as a special case of the VSS-q-PI
scheme, cannot be realized by the trivial scheme†.

2. Consider the case that a lot with win and lose is
made by a VSS scheme, where secret images SI(W )

and SI(L) represent win and lose, respectively.
In the case of the trivial scheme, letting

S(W ) = {s(W )1 , s
(W )
2 } and S(L) = {s(L)1 , s

(L)
2 } be

the share sets of the (2, 2)-threshold VSS-1-PI
scheme for the secret images SI(W ) and SI(L), re-
spectively, the lot can be realized if a dealer holds
{s(W )1 , s

(L)
1 } and distributes s(W )2 or s(L)2 to people

participating in the lot. In this case, two times
decryption, i.e., stacking the shares, is required to
know the result of the lot.

On the contrary, in the case of the VSS-q-PI
scheme, we can use the access structure Γ(W,L)

with Γ(W )−Qual = {{1, 2}}, Γ(L)−Qual = {{1, 3}} and
Γ+Forb = {{2, 3}}. Letting {s1, s2, s3} be the share
set, a dealer holds s1 and distributes s2 or s3 to
the people. In this case, by only once decryption,
we can know the result of the lot††.

This advantage of speedy decryption becomes
larger as the number of results in the lot becomes
larger, and the advantage is essential in commer-
cial uses.

3. Next, consider a case that a VSS scheme is used
as a tally. We have groups X,Y, Z, and Alice, Bob
and Carol belong to X and Y , X and Z, Y , re-
spectively. Each of them wants to prove to Peggy

†The VSS schemes with color ID images are treated in
[12]. However, the VSS schemes with color ID images can-
not be constructed by our method. See the next paragraph
of Theorem 2.

††This kind of lot is now commercialized by TOPPAN
PRINTING co., ltd.
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which groups he/she belongs to. In the case of the
trivial schemes, the tally can be realized by let-
ting S(X) = {s(X)1 , s

(X)
2 }, S(Y ) = {s(Y )1 , s

(Y )
2 }, and

S(Z) = {s(Z)1 , s
(Z)
2 } be the sets of shares of the

(2, 2)-threshold VSS-1-PI schemes for the secret
images SI(X), SI(Y ), SI(Z), respectively, and dis-
tributing the sets {s(X)1 , s

(Y )
1 , s

(Z)
1 }, {s(X)2 , s

(Y )
2 },

{s(X)2 , s
(Z)
2 }, and s

(Y )
2 , to Peggy, Alice, Bob, and

Carol, respectively.
In the case of the VSS-q-PI scheme, the tally

can be realized by letting {s1, s2, . . . , s6} be the
share set of the VSS-q-PI scheme for the ac-
cess structure given by Γ(X)−Qual = {{1, 4}, {1, 5}},

Γ(Y )−Qual = {{2, 4}, {2, 6}}, and Γ(Z)−Qual = {{3, 5}},
and distributing the shares {s1, s2, s3}, s4, s5, s6
to Peggy, Alice, Bob, and Carol, respectively.

In either case, by showing his/her shares to
Peggy, each person can prove the groups that
he/she belongs to. However, note that, for in-
stance, the following attacks are possible in the
case of the trivial scheme although the same at-
tacks cannot succeed in the case of VSS-q-PI
scheme.

(a) If Alice conspires with Bob, Alice can de-
ceive Peggy by showing {s(X)2 , s

(Y )
2 , s

(Z)
2 } to prove

that Alice belongs to all of X,Y, Z. (b) Bob can
hide by showing only s(Z)2 that he belongs to X. (c)
Assume that an adversary wants to impersonate
Alice. Such impersonation attack can be achieved
by stealing s(X)2 from Bob and s

(Y )
2 from Carol be-

sides by stealing {s(X)2 , s
(Y )
2 } from Alice.

As shown above, the VSS-q-PI schemes have advan-
tages than the trivial schemes in many cases.

6. Conclusion

In this paper, we considered a method to construct vi-
sual secret sharing schemes for q plural secret images
(VSS-q-PI scheme) with general access structures. In
the proposed VSS-q-PI schemes, each qualified set of
shares can decrypt their own secret images, but it does
not leak out any information of the other secret images.
Furthermore, the proposed scheme can encode color
and/or gray-scale secret images in addition to black-
white images. Finally in Sect. 5, we discussed the mer-
its of the VSS-q-PI schemes compared with the trivial
schemes.
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Appendix: Construction of VSS-1-PI
Scheme

In this appendix, we give a construction of the basis
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matrices of the VSS-1-PI scheme for readers’ conve-
nience. First, we describe a method to obtain the basis
matrices of the (n, n)-threshold VSS-1-PI scheme based
on the polynomial representations of the basis matrices
[7], [10]–[12]. Then, a general (Γ(1)Qual,ΓForb)-VSS-1-PI
scheme can be derived by the cumulative map [1], [6],
[10] from the (n, n)-threshold VSS-1-PI scheme.

A.1 Analytical Construction of VSS Schemes

Let v be an n-dimensional row vector, each element of
which is a color in E . Then, define an n × n! matrix
Cn(v) called a column permutation (CP) matrix which
consists of all n! permutations of tv. For example,

C3 ([gzz]) ∼


gzzgzz

zgzzgz
zzgzzg


 . (A· 1)

Note that in the permutation, all n colors in v are
treated different colors even if two or more elements in
v are the same color. In the case that all the elements of
v are different, there are (n!)! matrices that are equiva-
lent to Cn(v) in the equivalence relation ∼ introduced
in Sect. 2.3. However, by the benefit of the equivalence
relations ∼, it suffices to consider only one matrix that
is the representative in the equivalence class.

Now assume that a color k in E is a mixture of rk
different colors k〈e〉, e = 1, 2, . . . , rk, in E , i.e.,

k = k〈1〉 � k〈2〉 � · · · � k〈rk〉, (A· 2)

and an n-dimensional row vector vk is given by

vk = [k〈1〉 · · · k〈1〉︸ ︷︷ ︸
u1 times

· · · k〈rk〉 · · · k〈rk〉︸ ︷︷ ︸
urk
times

]

def=
[(

k〈1〉
)u1

· · ·
(
k〈rk〉

)urk
]
, (A· 3)

where k〈e〉 appears ue times in vk, and
∑rk

e=1 ue = n.
Then the number of the different column vectors ob-
tained by the permutations of vk is given by N(vk) def=(

n
u1,u2,...,urk

)
. The different column permutation (DP)

matrix Dn(vk) is defined as the matrix that consists of
such N(vk) different columns. For example, in the case
of vg = [cyy],

D3(vg) = D3
([

c1y2
])

∼


cyy

ycy
yyc


 . (A· 4)

We note that any CP matrix can be represented by the
concatenations of DP matrices. For instance, C3([cyy])
and D3([c1y2]) satisfies from Eqs.(A· 1)(A· 4) that

C3([cyy]) ∼ D3([c1y2]) �D3([c1y2]). (A· 5)

It is worth noting that any n−1 rows of a DP ma-
trix Dn(vk), say D′

n(vk), is equivalent to the concate-
nations of DP matrices with n− 1 rows. For example,

it holds that

D′
3([c
1y2]) ∼

[
c y y
y c y

]
∼ D2([c1y1]) �D2([c0y2]),

(A· 6)

where [c0y2] = [y2]. Generally, it holds for ue � 1,
e = 1, 2, . . . , rk, that〈
D′

n

([
(k〈1〉)u1(k〈2〉)u2 · · · (k〈rk〉)urk

])〉
=
〈
Dn−1

([
(k〈1〉)u1−1 (k〈2〉)u2 · · · (k〈rk〉)urk

])〉
�
〈
Dn−1

([
(k〈1〉)u1 (k〈2〉)u2−1 · · · (k〈rk〉)urk

])〉
� · · · �

〈
Dn−1

([
(k〈1〉)u1 (k〈2〉)u2 · · · (k〈rk〉)urk

−1
])〉

.

(A· 7)

We now describe the polynomial representations of
basis matrices. We identify each equivalence class of a
basis matrix with a homogeneous polynomial of degree
n in the following way:

First, we identify colors k〈e〉 and z with variables
k〈e〉 and z, respectively. We also identify the equiva-
lence class of the DP matrix 〈Dn(vk)〉 and the concate-
nations operation � with a monomial

∏rk

e=1
(k〈e〉)ue

ue!
and

the operation +, respectively.
Assume that the equivalence classes of the basis

matrices Bk,�, 0 � � � Lk, representing colors K� are
constructed by the concatenation of the equivalence
classes of the DP matrices Dn(vk) as follows.

〈Bk,�〉 = 〈Dn(vk)〉 � · · · � 〈Dn(vk)〉︸ ︷︷ ︸
P�−1

l=0 d
(1)
k,l

.
N(vk) times

�〈X〉, (A· 8)

where
∑�−1

l=0 d
(1)
k,l is a multiple of N(vk) and X consists

of the concatenations of DP matrices that contain at
least one z in every column†. In such cases, 〈Bk,�〉 can
be identified with the basis polynomials Fk,�, which is a
homogeneous polynomial of degree n.

From the assumption Eq.(A· 8), the basis polyno-
mial Fk,� corresponding to Bk,� must satisfy that

Fk,�|z=0 =

∑�−1
l=0 d

(1)
k,l

N(vk)

rk∏
e=1

(k〈e〉)ue

ue!
. (A· 9)

On the other hand, the polynomial corresponding
to the right hand side of Eq. (A· 7) is given by

rk∑
e=1


(k〈e〉)ue−1

(ue − 1)!

rk∏
e′=1
e′ �=e

(k〈e
′〉)ue′

ue′ !




= ϕ

rk∏
e=1

(k〈e〉)ue

ue!
(A· 10)

†In the case of K0 = Z, 〈Bk,0〉 is obtained by letting
P�−1

l=0 d
(1)
k,l = 0.
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where ϕ =
∑rk

e=1
∂

∂k〈e〉 . Therefore, if any n− 1 rows of
Bk,� are equivalent for any k and �, the basis polynomial
Fk,� must satisfy that

ψFk,� = F, (A· 11)

where ψ =
∑

k∈E
∂
∂k and F is a homogeneous polyno-

mial of degree n− 1 that depends on neither k nor �.
Summarizing the above, we have the following the-

orem.

Theorem 3: Suppose that the basis matrices Bk,� are
obtained by the concatenations of the DP matrices as
shown in Eq. (A· 8). Then, the basis polynomials Fk,�

corresponding to Bk,� satisfy Eqs. (A· 9) and (A· 11).
✷

In the case that Lk = 1 for all k and all the basis
matrices consist of CP matrices, the basis polynomi-
als can be obtained by solving the partial differential
equations Eqs. (A· 9) and (A· 11) as shown in [10], [12].
But in general cases, it is difficult to derive the explicit
solutions of Eqs. (A· 9), (A· 11). Hence, we consider the
case that rk = 1 and u1 = n for all k. In this case, it
holds that N(vk) = 1 for all k, and Eq. (A· 9) becomes

Fk,�|z=0 =
�−1∑
l=0

d
(1)
k,l

kn

n!
. (A· 12)

Then, the basis polynomials are given by

Fk,� =
�−1∑
l=0

d
(1)
k,l f

0(k) +
Lk−1∑
l=�

d
(1)
k,l f

1(k)

+
∑

h∈E\{z,k}

Lh−1∑
l=0

d
(1)
h,l f

1(h), (A· 13)

where f0 and f1 are represented as

f0(k) =
n∑

t=0
t:even

zt

t!(n− t)!
kn−t, (A· 14)

f1(k) =
n∑

t=1
t:odd

zt

t!(n− t)!
kn−t. (A· 15)

and they satisfy ( ∂
∂k + ∂

∂z )f0(k) = ( ∂
∂k + ∂

∂z )f1(k).
Eqs. (A· 14), (A· 15) can easily be obtained from the
results shown in [7], [9], [11], and hence we omit the
derivation.

Furthermore, it is easy to check that the pixel ex-
pansion of Bk,� corresponding to Eq. (A· 13) is given by

m(1) =
∑
k∈E

Lk−1∑
l=0

d
(1)
k,l 2n−1. (A· 16)

Example 7: Let us consider the (3, 3)-threshold VSS-
1-PI scheme which has colors {G1,G2,Y1} on the de-
crypted image for E = {g, y, z}. If we set d(1)g,0 = d

(1)
y,0 = 1

and d
(1)
g,1 = 1, Eqs. (A· 12), (A· 11) are given by

Fg,1|z=0 =
g3

3!
, Fg,2|z=0 = 2

g3

3!
, Fy,1|z=0 =

y3

3!
,

(A· 17)
ψFg,1 = ψFg,2 = ψFy,1, (A· 18)

where ψ = ∂
∂z + ∂

∂g + ∂
∂y . Then, from Eq. (A· 13), the

solutions of Eqs. (A· 17), (A· 18) are given by

Fg,1 = f0(g) + f1(g) + f1(y), (A· 19)
Fg,2 = 2f0(g) + f1(y), (A· 20)
Fy,1 = f0(y) + 2f1(g). (A· 21)

Since f0(k) and f1(k) correspond to

D3([k3]) �D3([kz2]) =


kkzz
kzkz
kzzk


 , (A· 22)

D3([z3]) �D3([k2z]) =


zzkk
zkzk
zkkz


 , (A· 23)

respectively, the basis matrices corresponding to Fg,1,
Fg,2, Fy,1 are given as follows:

Bg,1 =


ggzzzzggzzyy

gzgzzgzgzyzy
gzzgzggzzyyz


 , (A· 24)

Bg,2 =


ggzzggzzzzyy

gzgzgzgzzyzy
gzzggzzgzyyz


 , (A· 25)

By,1 =


yyzzzzggzzgg

yzyzzgzgzgzg
yzzyzggzzggz


 . (A· 26)

Note that we can eliminate the column t[zzz] from
Eqs. (A· 24)–(A· 26), since t[zzz] is included in all B’s
and plays no role in Def.1 (i) and (ii). ✷

A.2 VSS-1-PI Schemes for General Access Structures

According to [1], [6], [10], we describe how to construct
the VSS scheme for a general access structure from the
basis matrices of the (n, n)-threshold VSS-1-PI scheme.

Assume that a (Γ(1)Qual,ΓForb)-VSS-1-PI scheme has
Γ+Forb = {F1,F2, . . . ,Ft}. Then, for T = {1, 2, . . . , t},
introduce the cumulative map α : N → 2T that is de-
fined by

α(p) = {i : p �∈ Fi, 1 � i � t} for p ∈ N .(A· 27)

Then, letting B̃k,� and Bk,� be the basis matrices of the
(t, t)-threshold VSS-1-PI scheme and the (Γ(i)Qual,ΓForb)-
VSS-1-PI scheme, respectively, Bk,� can be obtained
from B̃k,� as follows:
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Bk,�[[{p}]] = β(B̃k,�[[α(p)]]) for p ∈ N . (A· 28)

It is shown in [1], [10] that the basis matrices obtained
by Eq. (A· 28) satisfy the definition of (Γ(1)Qual,ΓForb)-
VSS-1-PI scheme.

Finally, if the same column vectors are included in
all Bk,�, we can eliminate them from every Bk,�’s, be-
cause the same column vectors in Bk,�’s play no role,
and the pixel expansion can be reduced by the elimina-
tion.
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