
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.1 JANUARY 2007
101

PAPER Special Section on Cryptography and Information Security

Optimal Multiple Assignments Based on Integer Programming in
Secret Sharing Schemes with General Access Structures∗

Mitsugu IWAMOTO†a), Member, Hirosuke YAMAMOTO††, Fellow, and Hirohisa OGAWA†††, Nonmember

SUMMARY It is known that for any general access structure, a secret
sharing scheme (SSS) can be constructed from an (m,m)-threshold scheme
by using the so-called cumulative map or from a (t,m)-threshold SSS by a
modified cumulative map. However, such constructed SSSs are not efficient
generally. In this paper, a new method is proposed to construct a SSS from
a (t,m)-threshold scheme for any given general access structure. In the
proposed method, integer programming is used to derive the optimal (t,m)-
threshold scheme and the optimal distribution of the shares to minimize the
average or maximum size of the distributed shares to participants. From the
optimality, it can always attain lower coding rate than the cumulative maps
because the cumulative maps cannot attain the optimal distribution in many
cases. The same method is also applied to construct SSSs for incomplete
access structures and/or ramp access structures.
key words: secret sharing schemes, general access structures, multiple
assignment map, integer programming, ramp schemes

1. Introduction

A Secret Sharing Scheme [1], [2] (SSS) is a method to share
a secret information S among a set of participants securely.
The secret S is encoded to so-called shares V1,V2, . . . ,Vn,
each of which is distributed to a participant. In the case
(k, n)-threshold SSSs, the secret S can be reproduced from
any k out of n shares although any k−1 or less shares do not
leak any information of S . Hence, S is secure even if k − 1
shares are stolen or n − k shares are destroyed. The (k, n)-
threshold access structure can be generalized to so-called
general access structures which consist of the families of
qualified sets and forbidden sets. A qualified set is the subset
of shares that can reproduce the secret, but a forbidden set
is the subset that does not leak out any information of S .

Generally, the efficiency of a SSS is measured by the
entropy of each share. It is known that for any access struc-
tures, the entropies of secret S and shares Vi, i = 1, 2, . . . , n,
must satisfy H(Vi) ≥ H(S) [3]–[5]. Furthermore, in the
case of (k, n)-threshold SSSs, the optimal SSSs attaining

Manuscript received March 23, 2006.
Manuscript revised June 28, 2006.
Final manuscript received August 30, 2006.
†The author is with Graduate School of Information Sys-

tems, University of Electro-Communications, Chofu-shi, 182-
8585 Japan.
††The author is with Graduate School of Frontier Sciences, Uni-

versity of Tokyo, Kashiwa-shi, 277-8561 Japan.
†††The author is with C4 technology, Inc., Tokyo, 141-0021

Japan.
∗This paper was presented at the technical meeting on ISEC of

IEICE, 2003, and the IEEE International Symposium on Informa-
tion Theory, 2004.

a) E-mail: mitsugu@hn.is.uec.ac.jp
DOI: 10.1093/ietfec/e90–a.1.101

H(Vi) = H(S) can easily be constructed [1]. However, it is
hard to derive efficient SSSs for arbitrarily given general ac-
cess structures although several construction methods have
been proposed.

For example, the monotone circuit construction [6] is
a method to realize a SSS by combining several (m,m)-
threshold SSSs. This method is simple but inefficient, and
hence, it is extended to the decomposition construction [7],
which uses several decomposed general SSSs. Although the
decomposition construction can attain the optimal coding
rates for some special access structures, it cannot construct
an efficient SSS in the case that the decomposed SSSs can-
not be realized efficiently. Note that a monotone circuit con-
struction is based on qualified sets. Hence, as another exten-
sion of monotone circuit construction, a method is proposed
to construct a SSS with general access structures based on
qualified sets and (t,m)-threshold SSSs [8].

On the other hand, for any given general access struc-
ture, a SSS can be constructed from a (t,m)-threshold SSS
by a multiple assignment map such that t or more shares
of the (t,m)-threshold SSS are assigned to qualified sets but
t − 1 or less shares are assigned to forbidden sets. The cu-
mulative map is a simple realization of the multiple assign-
ment map based on an (m,m)-threshold SSS [9]–[11], and
from the simplicity, it is often used in visual secret sharing
schemes for general access structures [12], [13]. However,
it is known that the SSS constructed by the cumulative map
is inefficient generally, especially in the case that the access
structure is a (k, n)-threshold SSS with k � n. Recently, a
modified cumulative map based on a (t,m)-threshold SSS is
proposed to overcome this defect [14]. But, the modified cu-
mulative map is not always more efficient than the original
cumulative map.

In this paper, we propose a new construction method
that can derive the optimal multiple assignment map by
integer programming. The proposed construction method
is simple and optimal in the sense of multiple assignment
maps. Furthermore, it can also be applied to incomplete
and/or ramp access structures.

This paper is organized as follows. In Sect. 2, we give
the definitions of SSSs and introduce the multiple assign-
ment map. We also introduce the construction methods of
the cumulative map and the modified cumulative map, and
we point out their defects. To overcome such defects, we
propose a new construction method of the optimal multiple
assignment map by integer programming in Sect. 3. Fur-
thermore, Sections 4 and 5 are devoted to present the appli-

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers

102
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.1 JANUARY 2007

cations of the proposed method to incomplete or ramp SSSs
for general access structures, respectively.

2. Preliminaries

2.1 Definitions

Throughout this paper, a set of shares and a family of share
sets are represented by bold-face and script letters, respec-
tively. For sets A and B, we denote a difference set by A−B,

which is defined as A − B
def
= A ∩ B where B means the

complement of B. Furthermore, the cardinality of A is rep-
resented by |A|, and the Cartesian product of A and B is
expressed by A × B.

Let V = {V1,V2, . . . ,Vn} be the entire set of shares, and
let 2V be the entire family of subsets of V. We represent the
family of qualified sets that can reproduce a secret informa-
tion S and the family of forbidden sets that cannot gain any
information of S byA1 andA0, respectively.
Γ = {A1,A0} is called an access structure. For in-

stance, the access structure of (k, n)-threshold SSSs can be
represented as follows:

A1 = {A ∈ 2V : k ≤ |A| ≤ n}, (1)

A0 = {A ∈ 2V : 0 ≤ |A| ≤ k − 1}. (2)

In SSSs, it obviously holds thatA1∩A0 = ∅. If it also holds
thatA1∪A0 = 2V , the access structure is called complete. If
A1 ∪A0 � 2V , it is called incomplete. Note that any access
structure must satisfy the following monotonicity.

A ∈ A1 ⇒ A′ ∈ A1 for all A′ ⊇ A (3)

A ∈ A0 ⇒ A′ ∈ A0 for all A′ ⊆ A (4)

Therefore, we can define the family of minimal qualified sets
and the family of maximal forbidden sets as follows:

A−1 = {A ∈ A1 : A − {V} � A1 for any V ∈ A}, (5)

A+0 = {A ∈ A0 : A ∪ {V} � A0 for any V ∈ V − A}.
(6)

We assume that the secret information S and each
share Vi are random variables, which take values in fi-
nite fields FS and FVi , respectively. Then, share set A =

{Vi1 ,Vi2 , . . . ,Viu }(⊆ V), which takes values in FA
def
= FVi1

×
FVi2
× · · · × FViu

, must satisfy the following conditions:

H(S |A) = H(S) if A ∈ A0, (7)

H(S |A) = 0 if A ∈ A1, (8)

where H(S) is the entropy of S and H(S |A) is the condi-
tional entropy of S for a given A.

Now, let us define the coding rate of a share Vi as

ρi
def
= H(Vi)/H(S), for i = 1, 2, . . . , n†. Since each ρi may be

different in the case of general access structures, it is cum-
bersome to treat each ρi individually. Hence, we consider
only the following average coding rate ρ̃ and worst coding
rate ρ∗.

ρ̃
def
=

1
n

n∑
i=1

ρi, (9)

ρ∗ def
= max

1≤i≤n
ρi. (10)

For a given access structure Γ = {A1,A0}, we call V ∈
V a significant share if there exists a share set A ∈ 2V such
that A ∪ {V} ∈ A1 but A ∈ A0.

Remark 1: Note that a non-significant share plays no roll
in the SSS, and hence, ρi = 0 can always be attained for each
non-significant share Vi in any access structure Γ. Further-
more, if there exists a non-significant share Vi with ρi > 0,
the average coding rate can be reduced by setting ρi = 0
without changing all the significant shares. Hence, we call
a non-significant share a vacuous share. On the other hand,
we have ρi ≥ 1 for any significant share Vi because it must
satisfy H(Vi) ≥ H(S) [3]–[5]. In the following, we assume
that every share is significant. �

If a SSS attains ρi = 1 for all i, it is called ideal. It
is known that in the case of (k, n)-threshold SSSs, the ideal
SSS can easily be constructed for any k and n [1]. Since
ρi ≥ 1, i = 1, 2, . . . , n, must hold for any significant share Vi

in any access structures, ρ̃ = 1 or ρ∗ = 1 are the necessary
and sufficient conditions for a SSS to be ideal [4].

2.2 Multiple Assignment Map

In this paper, we consider the construction of SSSs with gen-
eral access structures by distributing one or more shares of
a (t,m)-threshold SSS to each participant. The construction
method can generally be formulated by the multiple assign-
ment map [9]–[11], which is explained in the following.

Let Γ = {A1,A0} be a given general access struc-
ture with the entire share set V = {V1,V2, . . . ,Vn} and
let W(t,m) = {W (t)

1 ,W
(t)
2 , . . . ,W

(t)
m } be the entire share set

of a (t,m)-threshold SSS. We now consider a map ϕΓ :
{1, 2, . . . , n} → 2W(t,m) , which assigns each i ∈ {1, 2, . . . , n}
a subset of shares generated by the (t,m)-threshold scheme,

and a map ΦΓ : 2V → 2W(t,m) , which is defined as ΦΓ(A)
def
=⋃

Vi∈A ϕΓ(i) for a share set A ⊆ V. Then, ϕΓ is called a
multiple assignment map for the access structure Γ if ΦΓ(A)
satisfies the following conditions [9]–[11]:

|ΦΓ(A)| ≥ t if A ∈ A1, (11)

|ΦΓ(A)| ≤ t − 1 if A ∈ A0, (12)

ΦΓ(V) =W(t,m). (13)

It is easy to see that any SSS with access structure Γ sat-
isfying (7) and (8) can be realized by letting Vi = ϕΓ(i) if

†The coding rate ρi implies the number of bits of Vi per one
bit of the secret S . We note that a coding rate is often defined
as H(S)/H(Vi), which is the inverse of ρi, since it takes a value
between zero and one. However, H(S)/H(Vi) can become larger
than one in ramp SSSs. See Sect. 5. We use ρi as the coding rate
in this paper because ramp SSSs are treated in addition to normal
SSSs and the average coding rate ρ̃ can be simply defined as (9).

IWAMOTO et al.: OPTIMAL MULTIPLE ASSIGNMENTS BASED ON INT. PROG. IN SECRET SHARING SCHEMES
103

(11)–(13) are satisfied. To distinguish W (t)
j ∈W(t,m) from the

shares Vi of Γ, we call W (t)
j a primitive share.

Remark 2: In the multiple assignment maps, only one
(t,m)-threshold SSS is used. Although SSSs with general
access structures can be constructed by two or more thresh-
old SSSs, e.g., [6], [8], [14], [14, proposed scheme II], and
[15], they are out of the scope of this paper.

�

Since any (t,m)-threshold SSS can easily be con-
structed as an ideal SSS [1], [3], we assume in this paper that
the (t,m)-threshold SSS with W(t,m) = {W (t)

1 ,W
(t)
2 , . . . ,W

(t)
m }

is ideal. Then, the average and worst coding rates defined
by (9) and (10) become

ρ̃ =
1
n

n∑
i=1

|ϕΓ(i)|, (14)

ρ∗ = max
1≤i≤n
|ϕΓ(i)|, (15)

respectively, since it holds that H(W (t)
j) = H(S) and, hence,

ρi = |ϕΓ(i)|.
In the case of t = m, it is known that the multiple as-

signment map ϕΓ satisfying (11)–(13) can be realized for
any access structures [9]–[11]. Suppose that the access
structure Γ = {A1,A0} has

A+0 = {F1, F2, . . . , Fm}. (16)

Since m = |A+0 |, consider the map ψΓ : {1, 2, . . . , n} →
2W(m,m) defined by

ψΓ(i) =
⋃

j:Vi�F j

{
W (m)

j

}
(17)

where F j ∈ A+0 and W(m,m) = {W (m)
1 ,W (m)

2 , . . . ,W (m)
m } is the

entire set of primitive shares of an (m,m)-threshold SSS.
The above multiple assignment map ψΓ is called the cumu-
lative map [9]–[11], [16].

Example 3: Assume that n = 4 and access structure Γ1 is
defined by

A−1 = {{V1,V2,V3}, {V1,V4}, {V2,V4}, {V3,V4}}, (18)

A+0 = {{V1,V2}, {V1,V3}, {V2,V3}, {V4}}. (19)

Then, m =
∣∣∣A+0
∣∣∣ = 4, and the cumulative map ψΓ1 is given

from (17) as follows.

V1 = ψΓ1 (1) =
{
W (4)

3 ,W (4)
4

}
, (20)

V2 = ψΓ1 (2) =
{
W (4)

2 ,W (4)
4

}
, (21)

V3 = ψΓ1 (3) =
{
W (4)

1 ,W (4)
4

}
, (22)

V4 = ψΓ1 (4) =
{
W (4)

1 ,W (4)
2 ,W (4)

3

}
. (23)

In this example, it holds that ρ̃ = 9/4 and ρ∗ = 3. �

It is known that the next theorem holds for the cumula-
tive map ψΓ.

Theorem 4 ([16]): For any multiple assignment map ϕΓ :
{1, 2, . . . , n} → 2W(t,m) with t = m, it must hold that |W(m,m)| ≥
|A+0 |, i.e., m ≥ |A+0 |. The equality holds if and only if ϕΓ(i)
is equal to the cumulative map ψΓ(i) defined by (17) except
the freedom of permutations of F j’s in (16). �

Theorem 4 means that, in the case of t = m, the cumu-
lative map ψΓ minimizes the number of primitive shares m.
But, the minimization of m does not mean the realization of
an efficient SSS generally because it does not minimize the
average coding rate ρ̃ and/or the worst coding rate ρ∗.

For instance, consider the case that Γ is a (k, n)-
threshold access structure with k � n. If we construct
shares Vi by the cumulative map ψ for this Γ, each Vi

must consist of
(

n−1
k−1

)
primitive shares of an

((
n

k−1

)
,
(

n
k−1

))
-

threshold SSS because of |A+0 | =
(

n
k−1

)
. This means that

ρ̃ = ρ∗ =
(

n−1
k−1

)
. But, if we use the (k, n)-threshold SSS itself,

we have ρ̃ = ρ∗ = 1 because each Vi consists of one primi-
tive share. Hence, the cumulative map is quite inefficient in
the case that Γ is a (k, n)-threshold access structure. In order
to overcome this defect, a modified cumulative map is pro-
posed in [14] based on (t,m)-threshold SSSs†. The modified
cumulative map ψ′

Γ
is constructed as follows.

Construction 5 ([14]): For a given Γ = {A0,A1} and a

positive integer g
def
= min

A∈A−1
|A|, let G0 ⊆ A+0 be the family

defined by

G0 = {G ∈ A+0 : |G| ≥ g}. (24)

When G0 = {G1,G2, . . . ,Gu} � ∅, let l j
def
= |G j| − g + 1

for j = 1, 2, . . . , u, and � j
def
=
∑ j

p=1 lp. If G0 = ∅, let
u = 1 and �1 = 0. Then, consider a (g + �u, n + �u)-
threshold SSS and the set of primitive shares W(g+�u,n+�u) =

{W (g+�u)
1 ,W (g+�u)

2 , . . . ,W (g+�u)
n+�u
}. Furthermore, let U j, j =

1, 2, . . . , u, be the subset of primitive shares defined by

U1 = ∅ if G0 = ∅, (25)

U j =

{
W (g+�u)

n+� j−1+1,W
(g+�u)
n+� j−1+2, . . . ,W

(g+�u)
n+� j

}
if G0 � ∅, (26)

where �0 = 0. Then, the modified cumulative map ψ′
Γ

is
defined by

ψ′Γ(i) =
{
W (g+�u)

i

}
∪
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⋃

j:Vi�G j

U j

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (27)

�

In the case where Γ is a (k, n)-threshold access struc-
ture, it holds that G0 = ∅ and U1 = ∅, and hence, it holds
that ψ′

Γ
(i) = {W (k)

i } for i = 1, 2, . . . , n and this scheme co-
incides with the ideal (k, n)-threshold SSS [14]. Therefore,

†Since proposed scheme II in [14] uses two or more (t,m)-
threshold SSSs, it is not considered in this paper. See Remark 2.

104
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.1 JANUARY 2007

the modified cumulative map ψ′
Γ

is efficient if Γ is, or is sim-
ilar to, a (k, n)-threshold access structures. Furthermore, it
is shown in [14] that if the access structure Γ satisfies

∣∣∣A+0 ∣∣∣ ≥ (n − g − 1)�u + n + 2|G0|
n − g + 1

, (28)

then it holds that for the original cumulative map ψΓ,∑
Vi∈V |ψ′Γ(i)| ≤

∑
Vi∈V |ψΓ(i)|, which means that the average

coding rate ρ̃ of ψ′
Γ

is smaller than or equal to ψΓ.
But, as shown in the following example, ψ′

Γ
is not al-

ways more efficient than ψΓ if Γ does not satisfy (28).

Example 6: Consider the access structure Γ1 given by
(18) and (19) in Example 3, which does not satisfy (28).
Since we have g = 2 from (18), G0 becomes G0 =

{{V1,V2}, {V1,V3}, {V2,V3}} def
= {G1,G2,G3}. Furthermore,

since we have that l1 = l2 = l3 = 1 and �3 = 3, Ui’s are
determined as U1 = {W (5)

5 }, U2 = {W (5)
6 }, U3 = {W (5)

7 } for

W(5,7) = {W (5)
1 ,W (5)

2 , . . . ,W (5)
7 }. Hence, we can check that Γ1

does not satisfy (28) because of |A+0 | = 4, n = 4, g = 2,
�u = 3, and |G0| = 3. Finally, we have from (27) that

V1 = ψ′Γ1
(1) =

{
W (5)

1 ,W (5)
7

}
, (29)

V2 = ψ′Γ1
(2) =

{
W (5)

2 ,W (5)
6

}
, (30)

V3 = ψ′Γ1
(3) =

{
W (5)

3 ,W (5)
5

}
, (31)

V4 = ψ′Γ1
(4) =

{
W (5)

4 ,W (5)
5 ,W (5)

6 ,W (5)
7

}
. (32)

In this example, the coding rates are given by ρ̃ = 5/2 and
ρ∗ = 4, which are larger than the coding rates of Example 3,
i.e., ρ̃ = 9/4 and ρ∗ = 3. �

Note that (28) does not guarantee that the worst coding
rate ρ∗ of ψ′

Γ
is smaller than ψΓ. Actually, the next example

shows a case where ψ′
Γ

attains a smaller average coding rate
but gives larger worst coding rate than ψΓ.

Example 7: Consider the access structure Γ2 given by

A−1 = {{V1,V2,V3,V5}, {V1,V2,V4}, {V1,V3,V4},
{V1,V4,V5}, {V2,V3,V4},
{V2,V4,V5}, {V3,V4,V5}}, (33)

A+0 = {{V1,V2,V3}, {V1,V2,V5}, {V1,V3,V5},
{V2,V3,V5}, {V1,V4},
{V2,V4}, {V3,V4}, {V4,V5}}. (34)

Then, the cumulative map ψΓ2 is constructed as follows:

V1 = ψΓ2 (1) =
{
W (8)

4 ,W (8)
6 ,W (8)

7 ,W (8)
8

}
, (35)

V2 = ψΓ2 (2) =
{
W (8)

3 ,W (8)
5 ,W (8)

7 ,W (8)
8

}
, (36)

V3 = ψΓ2 (3) =
{
W (8)

2 ,W (8)
5 ,W (8)

6 ,W (8)
8

}
, (37)

V4 = ψΓ2 (4) =
{
W (8)

1 ,W (8)
2 ,W (8)

3 ,W (8)
4

}
, (38)

V5 = ψΓ2 (5) =
{
W (8)

1 ,W (8)
5 ,W (8)

6 ,W (8)
7

}
, (39)

which attains that ρ̃ = ρ∗ = 4. On the other hand, the modi-
fied cumulative map ψ′

Γ2
is given by

V1 = ψ′Γ2
(1) =

{
W (7)

1 ,W (7)
9

}
, (40)

V2 = ψ′Γ2
(2) =

{
W (7)

2 ,W (7)
8

}
, (41)

V3 = ψ′Γ2
(3) =

{
W (7)

3 ,W (7)
7

}
, (42)

V4 = ψ′Γ2
(4) =

{
W (7)

4 ,W (7)
6 ,W (7)

7 ,W (7)
8 ,W (7)

9

}
, (43)

V5 = ψ′Γ2
(5) =

{
W (7)

5 ,W (7)
6

}
. (44)

Observe that the rates of ψ′
Γ2

are given by ρ̃ = 13/5, ρ∗ = 5.
Hence, ψ′

Γ2
gives smaller ρ̃ but larger ρ∗ than ψΓ2 . �

As shown in Examples 6 and 7, the modified cumula-
tive map cannot always overcome the defects of the original
cumulative maps. Hence, in the next section, we propose a
construction method of multiple assignment maps that can
attain the optimal average or worst case coding rates based
on integer programming.

3. Optimal Multiple Assignment Maps

For a multiple assignment map ϕΓ : {1, 2, . . . , n} → 2W(t,m) , a
set A ⊆ V, and p ∈ {0, 1, . . . , 2n − 1}, let Xp be the subset of
W(t,m) defined by

Xp =

⎡⎢⎢⎢⎢⎢⎢⎣
⋂

i:b(p)i=1

ϕΓ(i)

⎤⎥⎥⎥⎥⎥⎥⎦ ∩
⎡⎢⎢⎢⎢⎢⎢⎣
⋂

i:b(p)i=0

ϕΓ(i)

⎤⎥⎥⎥⎥⎥⎥⎦ , (45)

where b(p)i is the i-th least significant bit in the n-bit bi-
nary representation of p. For example, in the case of p = 4
and n = 3, it holds that b(4)3 = 1, and (45) becomes
X4 = ϕΓ(3) ∩ ϕΓ(1) ∩ ϕΓ(2). Figure 1 is the Venn diagram
which shows the relation between Xp’s and ϕΓ(i)’s in the
case of n = 3. Since ϕΓ must satisfy (13), it must hold that⋂n

i=1 ϕΓ(i) = ∅, which implies that X0 = ∅. Hence, we con-
sider only Xp for p = 1, 2, . . . , 2n − 1 in the following.

Then, it is easy to check that Xp’s satisfy the following

equations for an arbitrary n and N
def
= 2n − 1.

Xp ∩ Xp′ = ∅ if p � p′ (46)

ϕΓ(i) =
⋃

p:b(p)i=1

Xp (47)

ΦΓ(A) =
⋃
Vi∈A

ϕΓ(i) =
⋃

p:b(p)i=1

for some Vi∈A

Xp (48)

Fig. 1 Relation between ϕΓ(i)’s and Xk’s in the case of n = 3.

IWAMOTO et al.: OPTIMAL MULTIPLE ASSIGNMENTS BASED ON INT. PROG. IN SECRET SHARING SCHEMES
105

Letting xp = |Xp|, the cardinality of ΦΓ(A) is given by

|ΦΓ(A)| =
∑

p:b(p)i=1

for some Vi∈A

xp, (49)

from (46) and (48).
Now, we describe how to design the optimal multiple

assignment map ϕ̃Γ which attains the minimum average cod-
ing rate. Note that, in order to design the multiple assign-
ment map ϕΓ for the set of primitive shares W(t,m), we have
to determine only xp, p = 1, 2, . . . ,N, and t, since m can be
calculated as m =

∑N
p=1 xp from (13) and (49).

Let y
def
= [t, x1, x2, . . . , xN] be the (N + 1)-dimensional

parameter vector to minimize the average coding rate.
Furthermore, for an integer � and a share set A, de-

fine an (N + 1)-dimensional row vector a(�; A)
def
=

[�, 1(A)1, 1(A)2, . . . , 1(A)N] where

1(A)p =

{
1 if b(p)i = 1 for some Vi ∈ A
0 otherwise.

(50)

Then, since (49) can be represented by inner product as
|ΦΓ(A)| = a(0; A) · y� where y� means the transpose of
vector y, the inequalities in the constraints (11) and (12) can
be represented by a(0; A) · y� ≥ t, and a(0; A) · y� ≤ t − 1,
respectively. Therefore, these constraints can be expressed
as

a(−1; A) · y� ≥ 0 if A ∈ A−1 , (51)

−a(−1; A) · y� ≥ 1 if A ∈ A+0 , (52)

respectively. Furthermore, denoting the Hamming weight in
the binary representation of p by hp, it holds from (47) that

n∑
i=1

|ϕΓ(i)| =
n∑

i=1

∑
p:b(p)i=1

xp =

N∑
p=1

hpxp = h · y�, (53)

where h = [0, h1, . . . , hN] ∈ ZN+1. Hence, the average cod-
ing rate ρ̃ in (14) is given by (1/n) h · y� which we want to
minimize.

We note here that a(·; ·) and h do not depend on the
multiple assignment map ϕΓ, and hence, summarizing (50)–
(53), we can formulate the integer programming problem
IPρ̃(Γ) that minimizes the average coding rate ρ̃ under the
constraints of (11) and (12) as follows:

IPρ̃(Γ)

minimize h · y�
subject to a(−1; A) · y� ≥ 0 for A ∈ A−1−a(−1; A) · y� ≥ 1 for A ∈ A+0

y ≥ 0

The optimal multiple assignment map ϕ̃Γ that attains
the minimum average coding rate can be constructed as
follows. First, let ỹ = [t̃, x̃1, x̃2, . . . , x̃N] be the minimiz-
ers of the integer programming problem IPρ̃(Γ), and we
use the (t̃, m̃)-threshold SSS with primitive shares W(t̃,m̃) =

{W (t̃)
1 ,W

(t̃)
2 , . . . ,W

(t̃)
m̃ } for secret S where m̃ can be calculated

from m̃ =
∑N

p=1 x̃p. Then, for each p, we can assign x̃p dif-
ferent primitive shares of W(t̃,m̃) to Xp that satisfies |Xp| = x̃p

and (46). Finally, the multiple assignment map ϕ̃Γ is ob-
tained by (47). Since ỹ satisfies (51) and (52), it is easy
to see that Vi = ϕ̃Γ(i) satisfies (11) and (12), and therefore,
they satisfy (7) and (8). Summarizing, we can obtain the
SSS with access structure Γ which has the optimal average
coding rate in all the multiple assignment maps.

Next, we consider the integer programming problem
IPρ∗ (Γ) that minimizes the worst coding rate ρ∗. Let
M be the maximal number of assigned primitive shares
among all Vi, i = 1, 2, . . . , n. Then, it must hold that
|ϕΓ(i)| ≤ M for all i = 1, 2, . . . , n, and the minimization
of M attains the optimal worst coding rate. Now, let z
be the (N + 2)-dimensional parameter vector defined by

z
def
= [M, t, x1, x2, . . . , xN]. Then, it holds that M = e · z�

where e is the (N + 2)-dimensional row vector defined by

e
def
= [1, 0, 0, . . . , 0]. Furthermore, by defining b(�, �′; A)

def
=

[�, �′, 1(A)1, 1(A)2, . . . , 1(A)N] where 1(A)p is defined by
(50), the number of primitive shares assigned to a share
set A ⊆ V can be expressed as b(0, 0; A) · z�. This
means that the condition |ϕΓ(i)| ≤ M can be represented by
−b(−1, 0; {Vi}) · z� ≥ 0. Hence, in the same way as IPρ̃(Γ),
the integer programming problem IPρ∗ (Γ) that minimizes the
worst coding rate ρ∗ can be formulated as follows:

IPρ∗ (Γ)

minimize e · z�
subject to b(0,−1; A) · z� ≥ 0 for A ∈ A−1−b(0,−1; A) · z� ≥ 1 for A ∈ A+0−b(−1, 0; {V}) · z� ≥ 0 for V ∈ V

z ≥ 0

The multiple assignment map ϕ∗
Γ

attaining the mini-
mum ρ∗ can also be constructed from the obtained mini-
mizer in the same way as the construction of ϕ̃Γ.

Remark 8: Actually, in SSSs, we can assume without loss
of generality that xN = 0, i.e., XN =

⋂n
i=1 ϕΓ(i) = ∅ because

it is not necessary to consider the set of primitive shares
commonly contained in every share. Hence, the vectors in
integer programming problems IPρ̃(Γ) and IPρ∗ (Γ) can be re-
duced to N-dimensional and (N + 1)-dimensional vectors,
respectively. However, xN = 0 does not hold generally in
the case of ramp SSSs, which is described in Remark 22 in
Sect. 5.2. �

Example 9: For the access structure Γ1 defined by (18)
and (19) in Example 3, the integer programming problem
IPρ̃(Γ1) can be formulated as follows:

106
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.1 JANUARY 2007

IPρ̃(Γ1)

minimize x1 + x2 + 2x3 + x4 + 2x5 + 2x6 + 3x7 + x8

+2x9 + 2x10 + 3x11 + 2x12 + 3x13 + 3x14

subject to −t + x1 + x2 + x3 + x4 + x5 + x6 + x7

+x9 + x10 + x11 + x12 + x13 + x14 ≥ 0
−t + x1 + x3 + x5 + x7 + x8 + x9

+x10 + x11 + x12 + x13 + x14 ≥ 0
−t + x2 + x3 + x6 + x7 + x8 + x9

+x10 + x11 + x12 + x13 + x14 ≥ 0
−t + x4 + x5 + x6 + x7 + x8 + x9

+x10 + x11 + x12 + x13 + x14 ≥ 0
t − x1 − x2 − x3 − x5 − x6 − x7

−x9 − x10 − x11 − x13 − x14 ≥ 1
t − x1 − x3 − x4 − x5 − x6 − x7

−x9 − x11 − x12 − x13 − x14 ≥ 1
t − x2 − x3 − x4 − x5 − x6 − x7

−x10 − x11 − x12 − x13 − x14 ≥ 1
t − x8 − x9 − x10 − x11

−x12 − x13 − x14 ≥ 1
xp ≥ 0, p = 1, 2, . . . , 14

By solving the above IPρ̃(Γ1), we obtain that the value
of the objective function is 5, which is attained by the fol-
lowing minimizers:

t̃ = 3,

x̃1 = x̃2 = x̃4 = 1, x̃8 = 2,

x̃i = 0 for i = 3, 5, 6, 7, 9, 10, . . . , 14. (54)

Hence, m̃ is given by m̃ =
∑14

p=1 x̃p = 5, and Xp’s be-

come X1 = {W (3)
1 }, X2 = {W (3)

2 }, X4 = {W (3)
3 }, and X8 =

{W (3)
4 ,W (3)

5 } where W(3,5) = {W (3)
1 ,W (3)

2 , . . . ,W (3)
5 }. Finally,

from (47), ϕ̃Γ1 is constructed as

V1 = ϕ̃Γ1 (1) =
{
W (3)

1

}
, (55)

V2 = ϕ̃Γ1 (2) =
{
W (3)

2

}
, (56)

V3 = ϕ̃Γ1 (3) =
{
W (3)

3

}
, (57)

V4 = ϕ̃Γ1 (4) =
{
W (3)

4 ,W (3)
5

}
. (58)

In this case, we have that ρ̃ = 5/4 and ρ∗ = 2. The integer
programming problem IPρ∗ (Γ1) derives the same solutions
as (54), and hence, it holds that ϕ̃Γ1 = ϕ

∗
Γ1

in this example.
Recall that the cumulative map ψΓ1 attains the coding rates
ρ̃ = 9/4 and ρ∗ = 3, and the modified cumulative map ψ′

Γ1

attains ρ̃ = 5/2 and ρ∗ = 4. Hence, ϕΓ1 can attain smaller
coding rates compared with ψΓ1 and ψ′

Γ1
. �

Example 10: For the access structure Γ2 defined by (33)
and (34) in Example 7, we can obtain the following mul-
tiple assignment map by solving the integer programming
problem IPρ̃(Γ2).

V1 = ϕ̃Γ2 (1) =
{
W (4)

1

}
, (59)

V2 = ϕ̃Γ2 (2) =
{
W (4)

2

}
, (60)

V3 = ϕ̃Γ2 (3) =
{
W (4)

3

}
, (61)

V4 = ϕ̃Γ2 (4) =
{
W (4)

4 ,W (4)
5

}
, (62)

V5 = ϕ̃Γ2 (5) =
{
W (4)

6

}
, (63)

where W (4)
i ∈W(4,6). Then, it holds that ρ̃ = 6/5 and ρ∗ = 2.

Furthermore, it holds that ϕ̃Γ2 = ϕ
∗
Γ2

in this access structure.
Recall again that the cumulative map ψΓ2 attains the coding
rates ρ̃ = ρ∗ = 4, and the modified cumulative map ψ′

Γ2

attains ρ̃ = 13/5 and ρ∗ = 5. Hence, ϕ̃Γ2 is more efficient
than ψΓ2 and ψ′

Γ2
. �

Since any access structure can be realized by the cumu-
lative map (and the modified cumulative map), there exists
at least one multiple assignment map for any access struc-
ture. Therefore, the next theorem holds obviously.

Theorem 11: For any access structure Γ that satisfies
monotonicity (3) and (4), the integer programming prob-
lems IPρ̃(Γ) and IPρ∗ (Γ) always have at least one feasible
solution, and hence, there exists the optimal multiple assign-
ment map. �

Remark 12: The integer programming problems are NP-
hard, and hence, the proposed algorithms may take much
time in solving for large N = 2n − 1 where n = |V|. How-
ever, several techniques to solve the integer programming
efficiently have been developed [17] and their implemented
softwares are easily available. For instance, in the case of
IPρ(Γ3) in Example 13 with n = 6, it can be solved within
0.1 seconds by a laptop computer with a software called
lp solve†. �

Example 13: Consider the following access structure Γ3:

A−1 = {{V1,V3,V4,V5}, {V1,V3,V5,V6}, {V1,V4,V5,V6},
{V3,V4,V5,V6}, {V1,V2,V3}, {V1,V2,V5},
{V1,V2,V6}, {V2,V3,V4}, {V2,V3,V5},
{V2,V3,V6}, {V2,V4,V5},
{V2,V4,V6}, {V2,V5,V6}}, (64)

A+0 = {{V1,V3,V4,V6}, {V1,V2,V4}, {V1,V3,V5},
{V1,V4,V5}, {V1,V5,V6}, {V3,V4,V5},
{V3,V5,V6}, {V4,V5,V6},
{V2,V3}, {V2,V5}, {V2,V6}}. (65)

Then, we obtain the following multiple assignment map by
solving IPρ̃ (Γ3).

V1 = ϕ̃Γ3 (1) =
{
W (6)

1 ,W (6)
2

}
, (66)

V2 = ϕ̃Γ3 (2) =
{
W (6)

1 ,W (6)
3 ,W (6)

4 ,W (6)
5

}
, (67)

V3 = ϕ̃Γ3 (3) =
{
W (6)

6

}
, (68)

V4 = ϕ̃Γ3 (4) =
{
W (6)

2 ,W (6)
5

}
, (69)

V5 = ϕ̃Γ3 (5) =
{
W (6)

3 ,W (6)
7

}
, (70)

†lp solve is a well-known free (the GNU lesser general pub-
lic license) linear programming software, which can also treat in-
teger programming problems.

IWAMOTO et al.: OPTIMAL MULTIPLE ASSIGNMENTS BASED ON INT. PROG. IN SECRET SHARING SCHEMES
107

V6 = ϕ̃Γ3 (6) =
{
W (6)

8

}
, (71)

where W (6)
i ∈ W(6,8). ϕ̃Γ3 attains that ρ̃ = 2 and ρ∗ = 4. On

the other hand, the cumulative map for the access structure
Γ3 are given by

V1 = ψΓ3 (1)

=
{
W (11)

6 ,W (11)
7 ,W (11)

8 ,W (11)
9 ,W (11)

10 ,W (11)
11

}
, (72)

V2 = ψΓ3 (2)

=
{
W (11)

1 ,W (11)
3 ,W (11)

4 ,W (11)
5 ,

W (11)
6 ,W (11)

7 ,W (11)
8

}
, (73)

V3 = ψΓ3 (3)

=
{
W (11)

2 ,W (11)
4 ,W (11)

5 ,W (11)
8 ,W (11)

10 ,W (11)
11

}
, (74)

V4 = ψΓ3 (4)

=
{
W (11)

3 ,W (11)
5 ,W (11)

7 ,W (11)
9 ,W (11)

10 ,W (11)
11

}
, (75)

V5 = ψΓ3 (5) =
{
W (11)

1 ,W (11)
2 ,W (11)

9 ,W (11)
11

}
, (76)

V6 = ψΓ3 (6)

=
{
W (11)

2 ,W (11)
3 ,W (11)

4 ,W (11)
6 ,W (11)

9 ,W (11)
10

}
, (77)

where W (11)
i ∈ W(11,11). ψΓ3 has ρ̃ = 35/6 and ρ∗ = 7.

Furthermore, the modified cumulative map for Γ3 requires
(12, 15)-threshold SSS and has ρ̃ = 5 and ρ∗ = 9. �

Next, we clarify what kind of access structure can be
realized as an ideal SSS by the multiple assignment map.

Theorem 14: For an access structure Γ, the SSS con-
structed by the optimal multiple assignment map is ideal,
i.e., ρi = 1 for all i, if and only ifA−1 of Γ can be represented
by

A−1 =
⋃

∀{ j1 , j2 ,..., jt }
⊆{1,2,...,m}

{
A j1 × A j2 × · · · × A jt

}
, (78)

where t is a positive integer and {A1, A2, . . . , Am} is a parti-
tion of V which satisfies

m⋃
j=1

A j = V, (79)

A j � ∅ for j = 1, 2, . . . ,m, (80)

A j ∩ A j′ = ∅ if j � j′. (81)

�

Proof of Theorem 14: If there exists a partition
{A1, A2, . . . , Am} satisfying (78)–(81) for the access struc-
ture Γ, the ideal SSS can be obtained by letting

ϕΓ(i) = W (t)
j ∈W(t,m) if Vi ∈ A j (82)

for each i = 1, 2, . . . , n. Next, we show the necessity of
(78)–(81). Suppose that a certain ϕΓ(i) attains ρi = 1 for all
i. Then, define each A j as

A j
def
= Φ−1

Γ

({
W (t)

j

})
, j = 1, 2, . . . ,m, (83)

where Φ−1
Γ

: 2W(t,m) → 2V is the inverse map of ΦΓ(A)
def
=∑

i:Vi∈A ϕΓ(i). Then, it is easy to see that A j’s satisfy (78),
(79) and (80). Next, we prove that A j’s defined by (83)
satisfy (81). Assume that there exist A j and A j′ , j � j′, not
satisfying (81). Then, there exists a share Vi ∈ A j ∩ A j′ .
This means that W (t)

j ,W
(t)
j′ ∈ ϕΓ(i), which contradicts ρi =

|ϕΓ(i)| = 1. Hence, {A1, A2, . . . , Am} must be a partition of
V satisfying (78)–(81). �

In the case of t = 2, it is known that an access structure
Γ can be realized by an ideal SSS if and only if Γ can be
represented by a complete multipartite graph [18]. We note
that this condition coincides with (78)–(81) in this case. Fur-
thermore, in the case that |A j| = 1 for j = 1, 2, . . . ,m, the
access structure coincides with the (t,m)-threshold access
structure. Hence, if Γ is the (k, n)-threshold access struc-
ture, the multiple assignment maps obtained from the in-
teger programming problems IPρ̃(Γ) and IPρ∗ (Γ) obviously
satisfy that |ϕ̃Γ(i)| = |ϕ∗Γ(i)| = 1 for all i.

We note that any access structures not satisfying (78)–
(81) must have ρ̃ > 1 and ρ∗ ≥ 2 if the multiple assignment
map is used. But, an access structure not satisfying (78)–
(81) might be realized as an ideal SSS if we use another
construction method. For example, refer [7].

In this paper, we assume that every share is significant.
But, if there exist vacuous shares in the access structure Γ, it
is cumbersome to check whether each share is significant or
vacuous. From Remark 1, the optimal multiple assignment
map ϕ̃Γ attaining the minimum average coding rate must sat-
isfy that |ϕ̃Γ(i)| = 0 for any vacuous share Vi. On the other
hand, it clearly holds that |ϕΓ(i)| ≥ 1 for every significant
share Vi since ρi ≥ 1 holds for any significant share. Hence,
by solving the integer programming problem IPρ̃(Γ), we can
also know whether a share is significant or vacuous although
it cannot be known by solving IPρ∗ (Γ).

4. Multiple Assignment Maps for Incomplete Access
Structures

In the previous sections, we considered how to construct a
SSS for a complete general access structure Γ = {A1,A0}.
But in practice, it may be cumbersome to specify whether
each subset of V is a qualified set or a forbidden set because
the number of the subsets is 2n. Hence, a method is proposed
in [11] to construct a SSS for the case such that some subsets
of V are not specified as qualified nor forbidden sets.

Theorem 15 ([11]): Let Γ� = {A�
1,A�

0} be an incomplete

access structure, which has A�
1 ∪ A�

1 � 2V . Then, there
exists a complete access structure Γ = {A1,A0} such that

A�
1 ⊆ A1, (84)

A�
0 ⊆ A0, (85)

if and only if it holds that for any A ∈ A�
1 and B ∈ A�

0,

A � B. (86)

�

108
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.1 JANUARY 2007

In case that (86) is satisfied, the SSS satisfying the
incomplete access structure Γ� = {A�

1,A�
0} can be real-

ized by applying the cumulative map to the complete ac-
cess structure Γ = {A1,A0}. In fact, for the access structure
Γ� = {A�

1,A�
0}, a SSS is constructed in [11] by a cumula-

tive map ψΓ� (i) =
⋃

j:Vi�F j
{W (t)

j } forA�+
0 = {F1, F2, . . . , Fm}.

This construction corresponds to the case that

A+0 = A�+
0 andA1 = 2V −A0. (87)

However, ψΓ� is not efficient generally because ψΓ�
is a cumulative map, which is inefficient as described in
Sect. 2.2. Furthermore, even if the cumulative map can at-
tain the optimal coding rates for the access structure given
by (87), the access structure may not be optimal among all
the complete access structures Γ = {A1,A0} satisfying (84)
and (85) for the given Γ� = {A�

1,A�
0}.

In our construction based on integer programming, the
optimal multiple assignment map for the incomplete access
structure Γ� = {A�

1,A�
0} can easily be obtained by applying

IPρ̃(Γ) or IPρ∗ (Γ) directly to Γ�.

Example 16: Let us consider the following access struc-
ture Γ�3 = {A�

1,A�
0}:

A�
1 = {{V1,V4,V5,V6}, {V1,V2,V5}, {V1,V2,V6},

{V2,V3,V6}, {V2,V4,V6}}, (88)

A�
0 = {{V1,V3,V4,V6}, {V1,V3,V5}, {V1,V5,V6},

{V3,V4,V5}, {V4,V5,V6}, {V2,V5}}, (89)

Note that A�
1 and A�

0 satisfy A�
1 ⊆ A−1 and A�

0 ⊆ A+0 for
Γ3 = {A1,A0}, which is defined by (64) and (65) in Exam-
ple 13. Then, by solving IPρ̃(Γ

�
3), we obtain the following

multiple assignment map.

V1 = ϕ̃
Γ
�
3
(1) =

{
W (4)

1

}
, (90)

V2 = ϕ̃
Γ
�
3
(2) =

{
W (4)

2 ,W (4)
3

}
, (91)

V3 = ϕ̃
Γ
�
3
(3) =

{
W (4)

4

}
, (92)

V4 = ϕ̃
Γ
�
3
(4) =

{
W (4)

4

}
, (93)

V5 = ϕ̃
Γ
�
3
(5) =

{
W (4)

5

}
, (94)

V6 = ϕ̃
Γ
�
3
(6) =

{
W (4)

6

}
, (95)

where W (4)
i ∈ W(4,6), and it holds that ρ̃ = 7/6 and ρ∗ = 2.

Hence, we can realize a more efficient SSS for the incom-
plete access structure Γ�3 rather than the complete access

structure Γ3 because Γ�3 has fewer constraints. If we ap-

ply the cumulative map to Γ�3, ψ
Γ
�
3

is constructed from the

(6, 6)-threshold scheme, and it has ρ̃ = 3 and ρ∗ = 5. �

Similarly to complete SSSs, vacuous shares Vi in Γ� =
{A�

1,A�
0} can be detected by checking |ϕΓ� (i)| = 0 for the

solution of the IPρ̃(Γ�).

5. Ramp SSSs with General Access Structures

The coding rate ρi must satisfy ρi ≥ 1 for any significant
share Vi if the access structure is perfect, i.e., every subset
A ⊆ V is classified into either qualified sets A1 or forbid-
den sets A0. Note that all access structures considered in
previous sections are perfect even if they are incomplete.
But, in the case of ramp (i.e., non-perfect) access structures
such that some subsets of V are allowed to have intermediate
properties between the qualified and forbidden sets, it is pos-
sible to decrease the coding rate ρi to less than 1. The SSSs
having the ramp access structure are called ramp schemes
[19], [20]. In this section, we treat the construction of ramp
SSSs based on the multiple assignment maps. We consider
only the minimum average coding rate in this section. But,
for the minimum worst coding rate, integer programming
can be formulated in a similar way.

5.1 Preliminaries for Ramp Schemes

First, let us review the definition of ramp SSSs. Suppose
that L + 1 families A j ⊆ 2V , j = 0, 1, . . . , L, satisfy the
following.

H(S |A) =
L − j

L
H(S), for any A ∈ A j (96)

Equation (96) implies that the secret S leaks out from a
set A ∈ A j with the amount of (j/L)H(S). Especially,
S can be reproduced completely from any A ∈ AL, and
any A ∈ A0 leaks out no information of S . Note that,
in the case of L = 1, the ramp SSS reduces to the per-
fect SSS treated in Sects. 2–4, and hence, the ramp SSS can
be considered as an extension of the perfect SSS. We call
ΓR = {A0,A1, . . . ,AL} the access structure of the ramp SSS
with L + 1 levels. Without loss of generality, we can as-
sume that

⋃L
j=0A j = 2V and A j ∩ A j′ = ∅ for j � j′,

although incomplete access structures with
⋃L

j=0A j � 2V

can be treated in the same way as in Sect. 4.
For example, the access structure of (k, L, n)-threshold

ramp SSS [19], [20] is defined as follows:

A0 = {A ∈ 2V : 0 ≤ |A| ≤ k − L}, (97)

A j = {A ∈ 2V : |A| = k − L + j}, for 1 ≤ j ≤ L − 1,

(98)

AL = {A ∈ 2V : k ≤ |A| ≤ n}. (99)

In ramp SSSs, a significant share can also be defined
in the same way as the perfect SSSs shown in Sect. 2.1. A
share Vi ∈ V is called significant if there exists a share set
A ∈ 2V such that A ∪ {Vi} ∈ A j and A ∈ A j′ with j > j′.
Then, a non-significant share Vi′ satisfies that A∪{Vi′ } ∈ A j

for any share set A ∈ A j, j = 0, 1, . . . , L. Furthermore, if
a non-significant share Vi′ satisfies {Vi′ } ∈ A0, Vi′ plays no
roll in the ramp SSS, and hence, we call Vi′ a vacuous share.
However, there exists a ramp scheme such that A0 = ∅ and
a non-significant share satisfy {Vi′ } ∈ A j for some j ≥ 1.

IWAMOTO et al.: OPTIMAL MULTIPLE ASSIGNMENTS BASED ON INT. PROG. IN SECRET SHARING SCHEMES
109

This case implies that H(Vi′) ≥ H(S)/L, and H(Vi′ |V) = 0
for any V ∈ V, i.e., a non-significant Vi′ is included in every
share. Therefore, we call such a non-significant share Vi′ a
common share.

Remark 17: It is known that for any access structure with
L + 1 levels, the coding rate ρi must satisfy ρi ≥ 1/L for any
significant share Vi [21]. Especially, in the case of (k, L, n)-
threshold SSSs, the optimal ramp SSS attaining ρi = 1/L for
all i can easily be constructed [19], [20]. Any common share
Vi must also satisfy that ρi ≥ 1/L. On the other hand, in the
same way as Remark 1 for the perfect SSSs, each vacuous
share Vi can be realized as ρi = 0 for any access structure.
Furthermore, if there exists a vacuous share with ρi > 0, the
average coding rate can be reduced by setting ρi = 0 without
changing all the significant and the common shares. �

Letting Ǎ j
def
=
⋃L
�= jA� and Â j

def
=
⋃ j
�=0A�, for j =

0, 1, . . . , L, the monotonicity in (3) and (4) are extended as
follows:

A ∈ Ǎ j ⇒ A′ ∈ Ǎ j for all A′ ⊇ A (100)

A ∈ Â j ⇒ A′ ∈ Â j for all A′ ⊆ A (101)

Therefore, the minimal and maximal families of the ac-
cess structure, ΓR− = {A−0 ,A−1 , . . . ,A−L} and ΓR+ =

{A+0 ,A+1 , . . . ,A+L}, respectively, can be defined as

A−j = {A ∈ A j : A − {V} � Ǎ j for any V ∈ A}, (102)

A+j = {A ∈ A j : A ∪ {V} � Â j for any V ∈ 2V − A}.
(103)

Then, the following theorem holds.

Theorem 18 ([21]): A ramp SSS with access structure
ΓR = {A0,A1, . . . ,AL} can be constructed if and only if Ǎ j

and Â j satisfy the monotonicity (100) and (101), respec-
tively, for all j = 1, 2, . . . , L. �

In Theorem 18, the necessity of the condition is obvi-
ous, and the sufficiency is established by the next construc-
tion.

Construction 19 ([21]): Let S = {S 〈1〉, S 〈2〉, . . . , S 〈L〉} be a
secret, and let Γ〈 j〉 = {Ǎ j, 2V − Ǎ j}, j = 1, 2, . . . , L, be
the perfect access structures determined from a given access
structure ΓR. Since each Γ〈 j〉 is a perfect access structure sat-
isfying the monotonicity (3) and (4), we can construct a SSS
with Γ〈 j〉 for secret S 〈 j〉. Letting {V〈 j〉1 ,V〈 j〉2 , . . . ,V〈 j〉n } be the
shares for S 〈 j〉 and Γ〈 j〉, the share Vi = {V〈1〉i ,V〈2〉i , . . . ,V〈L〉i }
realizes the access structure ΓR. For ΓR, a ramp SSS can
also be constructed from {2V − Â j, Â j} instead of Γ〈 j〉 =
{Ǎ j, 2V − Ǎ j}. �

Remark 20: Note that in Construction 19, we have ρi ≥
1 for any access structure. For example, in the case that
Construction 19 is applied to the (k, L, n)-threshold access
structure, the constructed ramp SSS has ρi = 1 although
the (k, L, n)-threshold SSS can be realized with ρi = 1/L.
Therefore, Construction 19 is not efficient generally. �

Example 21: Consider the following ramp access struc-
ture ΓR

4 for V = {V1,V2,V3,V4}:
A3 = {{V1,V2,V3,V4}}, (104)

A2 = {{V1,V2,V3}, {V1,V3,V4}}, (105)

A1 = {{V1,V2,V4}, {V2,V3,V4}}, (106)

A0 = {A : 0 ≤ |A| ≤ 2}. (107)

First, we derive the access structures Γ〈1〉, Γ〈2〉, and Γ〈3〉
based on (104)–(107), and it is easy to see that Γ〈1〉 and
Γ〈3〉 become (3, 4)- and (4, 4)-threshold access structures, re-
spectively. Hence, we have V〈1〉i = W (3)

i and V〈3〉i = W (4)
i for

i = 1, 2, 3, 4 where {W (3)
i }4i=1 and {W (4)

i }4i=1 are the share sets
of (3, 4)- and (4, 4)-threshold access structures for secrets
S 〈1〉 and S 〈3〉, respectively. Furthermore, a perfect SSS with
the access structure Γ〈2〉 for a secret S 〈2〉 can be realized by
{V〈2〉i }4i=1 such that V〈2〉1 = W′(3)

1 , V〈2〉2 = W′(3)
2 , V〈2〉3 = W′(3)

3 ,

and V〈2〉4 = W′(3)
2 where {W′(3)

i }3i=1 is the share sets of (3, 3)-
threshold SSS for S 〈2〉.

According to Construction 19, we can obtain the shares
such that V1 = {W (3)

1 ,W′(3)
1 ,W (4)

1 }, V2 = {W (3)
2 ,W′(3)

2 ,W (4)
2 },

V3 = {W (3)
3 ,W′(3)

3 ,W (4)
3 }, and V4 = {W (3)

4 ,W′(3)
4 ,W (4)

4 }. Since
each share consists of three primitive shares for three secrets
S 〈1〉, S 〈2〉, S 〈3〉, the constructed ramp SSS has ρ̃ = ρ∗ = 1. �

The construction of ramp SSSs for general access
structures are treated in [22]. But, since the construction
in [22] is based on monotone span programming, it is much
complicated compared with the multiple assignment map.

5.2 Optimal Multiple Assignment Maps for Ramp SSSs

First, let W(t,L,m) = {W (t,L)
1 ,W (t,L)

2 , . . . ,W (t,L)
m } be the entire set

of primitive shares for the (t, L,m)-threshold ramp SSS with
the coding rate ρi = 1/L. Then, defining y and a(�; A) in the
same way as the perfect SSSs in Sect. 3, the optimal ramp
SSS by the multiple assignment map for a general ramp ac-
cess structure ΓR can be obtained by solving the following
integer programming problem:

IPR
ρ̃

(
ΓR
)

minimize h · y�
subject to a(−1; A) · y�≥ 0 for A ∈ A−L−a(−1; A) · y�= j for A ∈ A+j ∪A−j ,

1 ≤ j ≤ L − 1 (�)
−a(−1; A) · y� ≥ L for A ∈ A+0

y ≥ 0

Remark 22: From the monotonicity defined in (100) and
(101), it is sufficient to consider only A ∈ A+j ∪A−j instead

of all A ∈ A j on the marked line (�) in IPR
ρ̃

(
ΓR
)
. Note that

the same primitive shares may be distributed to all shares
since there may exist common shares in ramp SSSs. Hence,
we may have xN � 0 in the ramp SSSs although we can
always assume that xN = 0 in the perfect SSSs. �

From Remark 17, significant or common shares Vi

110
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.1 JANUARY 2007

must satisfy that |ϕΓ(i)| ≥ 1 for any multiple assignment
map ϕΓ. On the other hand, |ϕ̃Γ(i′)| = 0 must hold for vac-
uous shares Vi′ for the optimal multiple assignment map ϕ̃Γ
attaining the minimal average coding rate. Hence, it suffices
to consider only significant shares and common shares in the
ramp SSSs.

Example 23: If the access structures ΓR
4 in Example 21 is

applied to the integer programming problem IPR
ρ̃

(
ΓR

4

)
, the

following multiple assignment map is obtained

V1 = ϕ̃ΓR
4
(1) =

{
W (7,3)

1 ,W (7,3)
2

}
, (108)

V2 = ϕ̃ΓR
3
(2) =

{
W (7,3)

3 ,W (7,3)
4

}
, (109)

V3 = ϕ̃ΓR
4
(3) =

{
W (7,3)

5 ,W (7,3)
6

}
, (110)

V4 = ϕ̃ΓR
4
(4) =

{
W (7,3)

3 ,W (7,3)
7

}
, (111)

where W (7,3)
i ∈W(7,3,7). ϕ̃ΓR

4
attains that ρ̃ = ρ∗ = 2/3. �

Note that the coding rates less than 1 cannot be achieved
by Construction 19. Furthermore, our construction is much
simpler compared with the method in [22]. But, unfortu-
nately, the integer programming problem may not have any
feasible solutions in the case of ramp SSSs.

Example 24: The following access structure ΓR
5 cannot be

constructed by any multiple assignment map since the corre-
sponding integer programming problem has no feasible so-
lution.

A−4 = {{V1,V2,V3,V4}, {V1,V2,V4,V5},
{V2,V3,V4,V5}}, (112)

A3 = {{V1,V2,V3,V5}, {V1,V3,V4,V5}, {V1,V2,V3},
{V1,V2,V4}, {V1,V3,V4}, {V1,V3,V5},
{V2,V3,V4}}, (113)

A2 = {{V1,V2,V5}, {V1,V4,V5}, {V2,V3,V5},
{V2,V4,V5}, {V3,V4,V5}, {V1,V3}, {V1,V5}},

(114)

A1 = {{V1,V2}, {V2,V3}, {V3,V4}}, (115)

A+0 = {{V1,V4}, {V2,V5}, {V3,V5}}, (116)

�

In this case, we can modify the definition of the ramp SSS
given by (96) as follows.

H(S |A) = 0, for all A ∈ AL, (117)

H(S |A) ≥ L − j
L

H(S), for all A ∈ A j, 1 ≤ j ≤ L − 1,

(118)

H(S |A) = H(S), for all A ∈ A0. (119)

In order to implement (117)–(119) in the integer program-
ming, it suffices to replace the marked line (�) in IPR

ρ̃

(
ΓR
)

by −a(−1; A j) · y� ≥ j. Letting IPR2
ρ̃

(
ΓR
)

be the modified
integer programming problem, the next theorem holds.

Theorem 25: The integer programming problem IPR2
ρ̃

(
ΓR
)

always has a feasible solution for any access structure ΓR if
ΓR satisfies the monotonicity (100) and (101). �

Proof of Theorem 25: Let V be a multiset in 2V , some ele-
ments of which may be the same. Then, for V and A ⊆ V,
we define N(V, A) as follows.

N(V, A) =
∣∣∣{A′ ∈ V : A ⊆ A′}∣∣∣ , (120)

where all A′ ∈ V are treated as different sets even if some
of them are the same. Now we construct a multiset U for
ΓR = {A0,A1, . . . ,AL} by the next construction.

Construction 26:

(1) LetU := ∅ and j := 1.
(2) For each A ∈ A+L− j satisfying N(U, A) < j, we add A

intoU, (j − N(U, A)) times.
(3) Let j := j + 1.
(4) If j ≤ L, go to (2). In case of j = L + 1, go to (5).
(5) OutputU. �

From the monotonicity of Ǎ j in (100), the family U can
always be constructed. Then, lettingU = {F1, F2, . . . , Fm},
we can define a map ψ̌ : {1, 2, . . . , n} → 2W(m,L,m) by

ψ̌(i) =
⋃

j:Vi�F j

{
W (m,L)

j

}
, (121)

where W (m,L)
j ∈ W(m,L,m). Note that in the case of L = 1,

(121) coincides with the cumulative map in (17). Further-
more, for any set F� ∈ U, we can check from (121) that

W (m,L)
�′ �

⋃
i:Vi∈F�

ψ̌(i), (122)

holds for all �′ satisfying F� ⊆ F�′ .
Now, assume that |⋃i:Vi∈A ψ̌(i)| ≤ m − 1 for A ∈

AL. This implies that there exist at least one W (m,L)
�

�⋃
i:Vi∈A ψ̌(i). Hence, we have A ⊆ F� ∈ U in the same

way as we obtain (122), which contradicts the construc-
tion of U and the fact that A ∈ AL. Therefore, we have
|⋃i:Vi∈A ψ̌(i)| = m, i.e., Vi = ψ̌(i) satisfies (117).

Next, assume that F� ∈ A+L− j for j = 1, 2, . . . , L.
Then, from Construction 26, there exists a family of j
subsets {F�1 , F�2 , . . . , F� j } ⊆ U satisfying F� ⊆ F�′ for
�′ ∈ {�1, �2, . . . , � j}. Hence, it holds from (122) that
W (m,L)
�′ �

⋃
i:Vi∈F�

ψ̌(i) for �′ ∈ {�1, �2, . . . , � j}. This means
that
∣∣∣⋃i:Vi∈F�

ψ̌(i)
∣∣∣ ≤ m − j, and Vi = ψ̌(i) satisfies (118) and

(119).
Therefore, IPR2

ρ̃

(
ΓR
)

always has at least one feasible so-
lution. �

Note that as shown in the following example, Construc-
tion 26 gives inefficient assignments of the primitive shares,
generally.

Example 27: Assume that the access structure ΓR
5 in

(112)–(116) satisfies the conditions (117)–(119). First, we
apply Construction 26 to the access structure ΓR

5 . Then, we

IWAMOTO et al.: OPTIMAL MULTIPLE ASSIGNMENTS BASED ON INT. PROG. IN SECRET SHARING SCHEMES
111

obtain the following multisetUΓR
5
.

UΓR
5
= {{V1,V2,V3,V5}, {V1,V3,V4,V5}, {V1,V2,V4},
{V1,V2,V5}, {V1,V4,V5}, {V2,V3,V5},
{V2,V3,V4}, {V2,V4,V5}, {V2,V4,V5},
{V3,V4,V5}, {V1,V4}}. (123)

Hence, we can obtain Vi = ψ̌(i), i = 1, 2, . . . , 5, as follows:

V1 = ψ̌(1)

=
{
W (11,4)

6 ,W (11,4)
7 ,W (11,4)

8 ,W (11,4)
9 ,W (11,4)

10

}
,

(124)

V2 = ψ̌(2) =
{
W (11,4)

2 ,W (11,4)
5 ,W (11,4)

10 ,W (11,4)
11

}
,

(125)

V3 = ψ̌(3)

=
{
W (11,4)

3 ,W (11,4)
4 ,W (11,4)

5 ,W (11,4)
8 ,

W (11,4)
9 ,W (11,4)

11

}
, (126)

V4 = ψ̌(4) =
{
W (11,4)

1 ,W (11,4)
4 ,W (11,4)

6

}
, (127)

V5 = ψ̌(5) =
{
W (11,4)

3 ,W (11,4)
7 ,W (11,4)

11

}
, (128)

where Wi ∈ W(11,4,11). In this case, we have ρ̃ = 21/20 and
ρ∗ = 3/2 since it holds that H(W (11,4)

i) = H(S)/4 for each i.
On the other hand, we can construct the following op-

timal multiple assignment map ϕ̃ΓR
5

by solving the integer

programming problem IPR2
ρ̃ (ΓR

5).

V1 = ϕ̃ΓR
5
(1) =

{
W (8,4)

1 ,W (8,4)
2

}
, (129)

V2 = ϕ̃ΓR
5
(2) =

{
W (8,4)

3 ,W (8,4)
4 ,W (8,4)

5

}
, (130)

V3 = ϕ̃ΓR
5
(3) =

{
W (8,4)

2 ,W (8,4)
6

}
, (131)

V4 = ϕ̃ΓR
5
(4) =

{
W (8,4)

7 ,W (8,4)
8

}
, (132)

V5 = ϕ̃ΓR
5
(5) =

{
W (8,4)

9

}
, (133)

where W (8,4)
i ∈ W(8,4,9), and it holds that ρ̃ = 1/2 and ρ∗ =

3/4, which are more efficient than the rates of Construction
26. Note that (124)–(128) and (129)–(133) do not satisfy
(96) but satisfy (117)–(119). For instance, in (129)–(133),
it holds for {V1,V5} ∈ A2 that H(S |{V1,V5}) = H(S) >
H(S)/2.

Finally, we compare Construction 19 with Construc-
tion 26 for the access structure ΓR

5 . If we use the cumulative
map to realize each perfect SSS with the access structure
Γ
〈 j〉
5 , j = 1, 2, 3, 4, in Construction 19, we obtain ρ̃ = 9/5

and ρ∗ = 2. Hence, Construction 19 is less efficient than
Construction 26 in this case. �

6. Conclusion

We proposed a method to construct a SSS for any given gen-
eral access structure based on (t,m)-threshold SSS and inte-
ger programming. The proposed method can attain the op-
timal average and/or worst coding rates in the sense of mul-
tiple assignment maps. Hence, the proposed method can

attain smaller coding rates compared with the cumulative
maps and the modified cumulative maps. Furthermore, the
proposed method can be applied to incomplete and/or ramp
access structures in addition to complete and perfect access
structures.

Acknowledgments

The work of M. Iwamoto was partially supported by the
MEXT Grant-in-Aid for Young Scientists (B) No.17760298,
and the work of H. Yamamoto was partially supported by
the MEXT Grant-in-Aid for Scientific Research on Priority
Areas No.16016224.

References

[1] A. Shamir, “How to share a secret,” Commun. ACM, vol.22, no.11,
pp.612–613, 1979.

[2] G.R. Blakley, “Safeguarding cryptographic keys,” AFIPS 1979 Nat.
Computer Conf., vol.48, pp.313–317, 1979.

[3] E.D. Karnin, J.W. Greene, and M.E. Hellman, “On secret sharing
systems,” IEEE Trans. Inf. Theory, no.29, pp.35–41, 1983.

[4] R.M. Capocelli, A.D. Santis, L. Gargano, and U. Vaccaro, “On the
size of shares for secret sharing schemes,” J. Cryptol., vol.6, pp.157–
167, 1993.

[5] L. Csirmaz, “The size of a share must be large,” J. Cryptol., vol.10,
pp.223–231, 1997.

[6] J. Benaloh and J. Leichter, “Generalized secret sharing and mono-
tone functions,” Advances in Cryptology-CRYPTO’88, LNCS 403,
pp.27–35, Springer-Verlag, 1990.

[7] D.R. Stinson, “Decomposition construction for secret-sharing
schemes,” IEEE Trans. Inf. Theory, vol.40, no.1, pp.118–125, 1994.

[8] K. Tochikubo, T. Uyematsu, and R. Matusmoto, “Efficient secret
sharing schemes based on authorized subsets,” IEICE Trans. Funda-
mentals, vol.E88–A, no.1, pp.322–326, Jan. 2005.

[9] M. Itoh, A. Saito, and T. Nishizeki, “Secret sharing scheme realizing
general access structure,” IEEE Globecom, pp.99–102, 1987.

[10] M. Itoh, A. Saito, and T. Nishizeki, “Secret sharing scheme realiz-
ing general access structure,” IEICE Trans. Fundamentals (Japanese
Edition), vol.J71–A, no.8, pp.1592–1598, Aug. 1988.

[11] M. Itoh, A. Saito, and T. Nishizeki, “Multiple assignment scheme
for sharing secret,” J. Cryptol., vol.6, pp.15–20, 1993.

[12] G. Ateniese, C. Blundo, A.D. Santis, and D.R. Stinson, “Visual
cryptography for general access structures,” Inf. Comput., vol.129,
pp.86–106, 1996.

[13] H. Koga, M. Iwamoto, and H. Yamamoto, “An analytic construction
of the visual secret sharing scheme for color images,” IEICE Trans.
Fundamentals, vol.E84–A, no.1, pp.262–272, Jan. 2001.

[14] K. Tochikubo, “Efficient secret sharing schemes realizing general
access structures,” IEICE Trans. Fundamentals, vol.E87–A, no.7,
pp.1788–1797, Jan. 2004.

[15] K. Koyama, “Cryptographic key sharing methods for multi-groups
and security analysis,” IECE Trans., vol.E66, no.1, pp.123–20, Jan.
1983.

[16] G.J. Simmons, W.A. Jackson, and K. Martin, “The geometry of
shared secret schemes,” Bulletin of the ICA, vol.1, no.2, pp.230–
236, 1991.

[17] L.A. Wolsey, Integer Programming, Wiley Publishers, 1998.
[18] C. Blundo, A.D. Santis, D.R. Stinson, and U. Vaccaro, “Graph de-

compositions and secret sharing schemes,” J. Cryptol., vol.8, pp.39–
64, 1995.

[19] G.R. Blakley and C. Meadows, “Security of ramp schemes,”
Advances in Cryptology-CRYPTO’84, LNCS 196, pp.242–269,
Springer-Verlag, 1985.

112
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.1 JANUARY 2007

[20] H. Yamamoto, “On secret sharing systems using (k, L, n) threshold
scheme,” IEICE Trans. Fundamentals (Japanese Edition), vol.J68–
A, no.9, pp.945–952, Sept. 1985. English translation: Electron.
Commun. Jpn. 1, Commun., vol.69, no.9, pp.46–54, Scripta Tech-
nica, Inc., 1986.

[21] K. Kurosawa, K. Okada, K. Sakano, W. Ogata, and T. Tsujii,
“Nonperfect secret sharing schemes and matroids,” Advances in
Cryptology-EUROCRYPT’93, LNCS 765, pp.126–141, Springer-
Verlag, 1993.

[22] K. Srinathan, N.T. Rajan, and C.P. Rangan, “Non-perfect secret
sharing over general access structures,” Progress in Cryptology-
INDOCRYPT’02, LNCS 2551, pp.409–421, Springer-Verlag, 2002.

Mitsugu Iwamoto was born in Fukuoka,
on 29 July, 1976. He received the B.E., M.E.,
and Ph.D. degrees from the University of Tokyo,
Japan, in 1999, 2001, and 2004, respectively.
Currently, he is a research associate in Gradu-
ate School of Information Systems, University
of Electro-Communications. His research inter-
ests include information security and cryptogra-
phy. Dr. Iwamoto is a member of the IEEE and
the SITA (Society of Information Theory and Its
Applications).

Hirosuke Yamamoto was born in Waka-
yama, Japan, on November 15, 1952, He re-
ceived the B.E. degree from Shizuoka Univer-
sity, in 1975 and the M.E. and Ph.D. degrees
from the University of Tokyo, in 1977 and 1980,
respectively, all in electrical engineering. In
1980, he joined Tokushima University. He was
an Associate Professor at Tokushima University,
the University of Electro- Communications, and
the University of Tokyo, from 1983 to 1987,
from 1987 to 1993, and from 1993 to 1999, re-

spectively. Since 1999, he has been a Professor at the University of Tokyo.
He was with the School of Engineering and the School of Information Sci-
ence and Technology from 1993 to 1999 and from 1999 to 2004, respec-
tively, and is now with the School of Frontier Sciences in the University
of Tokyo. In 1989 and 1990, he was a Visiting Scholar at the Informa-
tion Systems Laboratory, Stanford University. His research interests are
in Shannon theory, data compression algorithms, and cryptology. Prof.
Yamamoto is a member of the IEEE and the SITA (Society of Information
Theory and its Applications). He served as Chair of the IEEE Informa-
tion Theory Society Japan Chapter in 2002 and 2003, Vice President of the
SITA in 2004 and 2005, and Technical Program Committee Co-Chair for
the 2004 International Symposium on Information Theory and its Applica-
tions (ISITA2004), which was held at Parma, Italy.

Hirohisa Ogawa was born in Japan on 1971.
His research interests include Cryptography and
Information Security. He is currently with C4
Technology, Inc.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

