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Strongly Secure Linear Network Coding

Kunihiko HARADA†a), Nonmember and Hirosuke YAMAMOTO††b), Fellow

SUMMARY In a network with capacity h for multicast, information
Xh = (X1, X2, · · · , Xh) can be transmitted from a source node to sink nodes
without error by a linear network code. Furthermore, secret information
S r = (S 1, S 2, · · · , S r) can be transmitted securely against wiretappers by
k-secure network coding for k ≤ h−r. In this case, no information of the se-
cret leaks out even if an adversary wiretaps k edges, i.e. channels. However,
if an adversary wiretaps k+1 edges, some S i may leak out explicitly. In this
paper, we propose strongly k-secure network coding based on strongly se-
cure ramp secret sharing schemes. In this coding, no information leaks out
for every (S i1 , S i2 , · · · , S ir− j ) even if an adversary wiretaps k + j channels.
We also give an algorithm to construct a strongly k-secure network code
directly and a transform to convert a nonsecure network code to a strongly
k-secure network code. Furthermore, some sufficient conditions of alpha-
bet size to realize the strongly k-secure network coding are derived for the
case of k < h − r.
key words: network coding, secure network coding, linear network coding,
secret sharing schemes, strong ramp secret sharing schemes

1. Introduction

A communication network like the Internet can be mod-
eled by a graph, in which each edge and each node corre-
spond to a channel and a computer, respectively. Each node
encodes information received from its incoming edges and
sends the encoded information to other nodes via outgoing
edges. Ahlswede-Cai-Li-Yeung [1] treated a multicast cod-
ing problem such that a source node in a network sends the
same information to several sink nodes without error. They
showed that network coding can increase the capacity of
the information than the case of routing, and the capacity is
given by the minimum of the max-flows from a source node
to sink nodes. Furthermore, Li-Yeung-Cai [2] showed that a
linear code can attain the multicast capacity of a network.

In network coding, secure transmission against wire-
tappers was treated by Cai and Yeung [3]. They showed that
if a network has capacity h, we can realize k-secure network
coding such that secret information S r = (S 1, S 2, · · · , S r),
r = h−k, can be transmitted to every sink node, which has at
least h edges, without error and no information of S r leaks
out even if an adversary wiretaps any k edges. Furthermore,
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Feldman-Malkin-Servedio-Stein(FMSS) [4] showed that a
nonsecure linear network code can be transformed linearly
to a k-secure network code.

We note that the above secure network coding is closely
related to (h, r,N)-threshold ramp secret sharing schemes
(SSSs), which were studied by Yamamoto [5] and Blakley-
Meadows [6] independently. In the (h, r,N)-threshold ramp
SSS, secret information S r is encoded to N shares such that
S r can be recovered from any h shares, but no information
of S r leaks out from any k(= h − r) shares.

In [5], Yamamoto classified the ramp SSSs into weakly
secure ramp SSSs and strongly secure ramp SSSs. In the
case of weakly secure ramp SSSs, some S i might leak out
explicitly if an adversary gets more than k shares. But, in
the case of strongly secure ramp SSSs, no information leaks
out for every (S i1 , S i2 , · · · , S ir− j ) even if an adversary gets
k+ j shares. Hence, the strongly secure ramp SSSs are more
secure than the weakly secure ramp SSSs.

The k-secure network coding treated in [3] and [4] cor-
responds to the weakly secure ramp SSSs. But, in this paper,
we propose strongly k-secure network coding based on the
strongly secure ramp SSSs.

In Sect. 2, we review the results of network coding and
ramp SSSs. Some notations are also given in Sect. 2. In
Sect. 3, we define the strongly k-secure network code such
that no information leaks out for every (S i1 , S i2 , · · · , S ir− j )
even if an adversary wiretaps k + j channels. We also de-
rive an algorithm to construct a strongly k-secure network
code directly for a given network. Furthermore, in Sect. 4,
we give a transform to convert a nonsecure network code to
a strongly k-secure network code. These construction algo-
rithm and transform can always realize the strongly k-secure
network coding for a given multicast network without cy-
cle if the alphabet size of information is sufficiently large.
Some sufficient conditions of the alphabet size to realize the
strongly k-secure network coding are derived for the case of
k < h− r in Sect. 6. Some examples of the strongly k-secure
network codes are given in Sect. 5.

2. Notations and Preliminaries

In this section, we define some notations used in this paper
and we review some known results for network coding and
ramp secret sharing schemes.

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers
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2.1 Network Coding

A communication network can be represented by a directed
graph G = (V,E), where V and E are the sets of all nodes
and all edges, respectively. Each node corresponds to an
encoder in the network and each edge represents a channel
between two nodes. Hence, E satisfies that E ⊂ V ×V and

E = {(u, v)|u ∈ V and v ∈ V
such that there is an edge from u to v}.

The cardinality of V and E are represented by |V| and |E|,
respectively. We denote starting and ending nodes of edge e
by tail(e) and head(e), respectively. For edge e = (u, v), e is
said to be an incoming edge of v and an outgoing edge of u.
We assume that every edge is a noiseless channel which can
transmit any symbol in a finite alphabet X without error.

If an edge can transmit c symbols at once, we divide
the edge into c parallel edges, each of which can transmit
one symbol at once. Then, the capacity of every edge can be
normalized as one without loss of generality. We assume in
this paper that G is normalized in this way.

We also assume for simplicity that G is acyclic, that is,
G does not have a directed cycles (v1, v2)(v2, v3) · · · (vi−1, vi)
(vi, v1) nor a loop (v, v). In this paper, we consider multicast
networks such that only one source node s ∈ V generates
information Xn = (X1, X2, · · · , Xn), where Xi is an indepen-
dent, identically and uniformly distributed random variable
over an alphabet X, and every sink node t1, t2, · · · tL ∈ V
must recover the information Xn without error. A main prob-
lem in the multicast network coding is to clarify how large
n is achievable for an arbitrarily given network G.

The network coding must satisfy the following natural
requirements.

Definition 1 (network code): A network code is a code that
satisfies the following.

• The outputs of a source node are encoded from the in-
formation generated at the node, and they are sent via
its outgoing edges.

• Each sink node decodes Xn from the information re-
ceived via its incoming edges.

• At a general node, its outputs are encoded from the in-
formation received via its incoming edges, and the out-
puts are sent via its outgoing edges.

We assume that every encoding at every node and every
transmission on every edge have no delay. Then, Ahlswede-
Cai-Li-Yeung [1] showed that the achievable n is determined
by the max-flow bound as shown in the following theorem.

Theorem 1 (max-flow bound [1]): For any given network
G, there exists a network code that can transmit Xn generated
at a source node s to all sink nodes t1, t2, · · · , tL if and only
if n satisfies that

n ≤ min
t∈T

maxflow(s, t), (1)

Fig. 1 An example of linear network coding.

Fig. 2 An example that requires q ≥ 3.

where T = {t1, t2, · · · , tL} and maxflow(s, t) stands for the
maximum flow from node s to node t in G, which is equal to
the total capacity given by the minimum cut between s and
t [7].

If all encoding in a network is implemented by linear
operations on X = Fq which is a finite field with cardinality
q, then it is called linear network coding.

Figure 1 shows a well-known example of a linear net-
work code, in which source node s generates (X1, X2) and
two sink nodes t1 and t2 must decode (X1, X2) without er-
ror. In this network, we note that operation X1 + X2 at node
v1 is a linear operation. It is shown in [2] that a linear net-
work code can achieve the bound of Eq. (1) with equality if
q is sufficiently large. But, if q is not large, the equality in
Eq. (1) cannot always be attained. For example, consider a
network given in Fig. 2, in which X + 2Y must be transmit-
ted on one of the outgoing edges of the source node to send
(X, Y) to all the sink nodes. This means that the cardinality
of the finite field, q, must be larger than 2 because Fq must
include {0, 1, 2} at least. Therefore, the necessary alphabet
size is an important factor in the linear network coding, and
it is shown that the linear network coding can be realized if
q ≥ |T | [8], [9].

In this paper, we treat the multicast linear net-
work coding such that a source output Xh with h =

mint∈T maxflow(s, t) is transmitted to all the sink nodes in
T . The information flowing on each node is a linear trans-
form of Xh, and it can be represented by a coding vector,
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which is defined as follows.

Definition 2 (coding vector): A coding vector b(e) as-
signed to an edge e is an h-dimensional column vector which
satisfies the following conditions.

1. A flow on edge e, say We, is given by We = Xhb(e).
2. Let v = tail(e) be not the source node s. Then, b(e) is

generated by a linear combination of the coding vectors
assigned to the incoming edges of the node v.

3. For each sink node t, all the coding vectors assigned to
the incoming edges of t must span the h-dimensional
vector space.

For a subset of edges A ⊆ E, let ZA be the matrix
obtained by concatenating all the coding vectors ofA. Fur-
thermore, let Z ≡ ZE for simplicity. Note that Z describes
all encoding in a network. It is known that Z can be de-
rived by a randomized algorithm [10] and deterministic al-
gorithms [9], [11], [12]. In this paper, we use the determin-
istic algorithm given by Jaggi-Sanders-Chau-Tolhuizen [9]
to construct strongly secure network codes.

2.2 Ramp Secret Sharing Schemes

A secret sharing scheme (SSS) is a method to encrypt a
secret information S r = (S 1, S 2, · · · , S r) into N shares,
V1,V2, · · · ,VN . In the case of (h, r,N) ramp threshold
schemes, S r can be decoded from any h shares, but no infor-
mation of S r leaks out from any k shares for k = h− r. More
precisely, the ramp SSS satisfies that for any {i1, · · · , ik+m} ⊆
{1, 2, · · · ,N} and any 0 ≤ m ≤ r,

H(S r |Vi1 ,Vi2 , · · · ,Vik+m ) =
r − m

r
H(S r), (2)

where H(·) and H(·|·) are the entropy and conditional en-
tropy functions, respectively.

In [5], the ramp SSS satisfying Eq.(2) is called a
weakly secure ramp SSS, and a strongly secure ramp SSS
is defined as the ramp SSS that satisfies, instead of Eq.(2),

H(S j1 , S j2 , · · · , S jr−m |Vi1 ,Vi2 , · · · ,Vik+m )

= H(S j1 , · · · , S jr−m ), (3)

for any {i1, · · · , ik+m} ⊆ {1, · · · ,N} and any { j1, · · · , jr−m} ⊆
{1, · · · , r}, 0 ≤ m ≤ r.

In the case of 0 < m < r, some part of S r might leak
out from Vi1 ,Vi2 , · · · ,Vik+m in the weakly secure ramp SSS.
But, no information leaks out for every (S j1 , S j2 , · · · , S jr−m )
from any Vi1 ,Vi2 , · · · ,Vik+m in the strongly secure ramp SSS.
So, from the viewpoint of security, the strongly secure ramp
SSS is better than the weakly secure ramp SSS.

In the case of linear ramp SSSs, shares are constructed
from a secret S r = (S 1, S 2, · · · , S r) and random numbers
(R1,R2, · · · ,Rk) by

(V1,V2, · · · ,VN)= (S 1, S 2, · · · , S r,R1,R2, · · · ,Rk)G,

where G is a matrix, and all S i and Rj are independent and

each of them is uniformly distributed over Fq. The condi-
tions of G to realize a weakly or strongly secure ramp SSS
is given by the following theorem [5, Theorem 2].

Theorem 2: Let bh, j, j = 1, 2, · · · , h be the j-th column
vector of the identity matrix with rank h, and let g j, j =
1, 2, · · · ,N, be the j-th column vector of G. Then, the fol-
lowing hold.

(a) The SSS generated by G is a weakly secure ramp SSS
if and only if bh,1, bh,2, · · · , bh,r and any h − r column
vectors in {g1, g2, · · · , gN} are linearly independent.

(b) The SSS is a strongly secure ramp SSS if and only if
any h column vectors obtained by picking up i vec-
tors from {bh,1, bh,2, · · · , bh,r} and h − i vectors from
{g1, g2, · · · , gN} are linearly independent for any 0 ≤
i ≤ h.

We note that the matrix G of a ramp SSS is closely
related to the matrix Z of a linear network code. Based on
this similarity, we define strongly secure network coding in
the following section.

3. Strongly Secure Network Coding

In the following, we assume that there exist several adver-
saries in a network. They wiretap several edges coopera-
tively. The number of wiretapped edges may vary depend-
ing on the situation of adversaries. In order to transmit S r =

(S 1, S 2, · · · , S r) securely against adversaries from a source
node s to all sink nodes t ∈ T in the network, we use a linear
network code Z for Xh = (S 1, S 2, · · · , S r,R1,R2, · · · ,Rh−r),
where h is defined by h = mint∈T maxflow(s, t), and Ri are
random numbers. S i and Ri take values in X = Fq, where q
is assumed to be sufficiently large in this section. But, the
size of q will be evaluated in Sect. 6.

We also assume that adversaries can know the linear
network code Z, i.e. they can know what linear transform of
Xh flows on each edge, and the source node and every sink
node share no secret key in advance.

We now define two types of security conditions for net-
work coding with adversaries in the same way as ramp SSSs.

Definition 3 (k-secure [3]): A linear network code Z is
called k-secure if Z satisfies that for any A ⊆ E with
rankZA ≤ k

H(S r |XhZA) = H(S r). (4)

In the case of linear network codes, the amount of leaked se-
crets increases linearly as rankZA increases. Hence, Eq. (4)
means that for k ≤ rankZA ≤ h,

H(S r |XhZA) =
[r + k − rankZA]+

r
H(S r), (5)

where [a]+ = max{a, 0}.

Definition 4 (strongly k-secure): A linear network code Z
is called strongly k-secure if Z is k-secure and it satisfies
that for anyA ⊆ E with k ≤ rankZA ≤ h,
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H(S i1 , S i2 , · · · , S ir+k−rankZA
|XhZA)

=
[r + k − rankZA]+

r
H(S r), (6)

= H(S i1 , S i2 , · · · , S ir+k−rankZA
) (7)

for ∀{i1, i2, · · · , ir+k−rankZA} ⊆ {1, 2, · · · r}.

Note that k-secure and strongly k-secure network codes
are closely related to weakly and strongly secure ramp SSSs,
respectively. In the case of k-secure network codes, some
S i in S r might leak out explicitly if adversaries wiretap
more than k edges. But, in the case of strongly k se-
cure network codes, no information leaks out for every
(S i1 , S i2 , · · · , S ir+k−rankZA

) in S r even if they wiretap more than
k edges. Hence, the strongly k-secure network codes are
more preferable than (weakly) k-secure network codes.

Remark 1: In the case of r + k = h, the operation [·]+
in Eqs. (5) and (6) is not necessary. But, a general case of
r + k ≤ h is considered in this paper because, as shown in
[4] and Sect. 6 of this paper, the size of q can be decreased
as h − (r + k) becomes larger.

Remark 2: Bhattad-Narayanan [13] defined weakly se-
cure network coding in a different sense. They considered
a network code Z satisfying that for any given edge set A
with rankZA ≤ h − 1,

H(S i|XhZA) = H(S i) for all i. (8)

They also extended the above case of a single S i to the case
of given subsets of secrets S 1, S 2, · · · , S r, and they called
their schemes weakly secure network coding.

Compared with the Bhattad-Narayanan scheme, our
scheme has ramp threshold security for S r, and hence, we
need not specify the edges that will be wiretapped by the
adversaries in advance. Furthermore, our network code Z
can easily be constructed as shown in this paper.

Cai-Yeung [3] showed that a k-secure network code can
be realized if and only if r ≤ h − k is satisfied. The same
also holds for the strongly k-secure codes as shown in the
following theorem.

Theorem 3: For sufficiently large q, there exists a strongly
k-secure code for any given network G if and only if r ≤
h − k.

Proof. The part of “only if” holds obviously from Cai-
Yeung’s results because a strongly k-secure code is k-secure.
The part of “if” holds because a strongly k-secure network
code can be constructed by the following Algorithm 1. �

Algorithm 1 is based on the Jaggi-Sanders-Chau-
Tolhuizen scheme [9] which can give coding vectors for
the case with no adversaries. We first explain briefly their
idea to construct a linear network code. For each sink node
t ∈ T of a given digraph G, there exist h edge-disjoint paths
pt,1, pt,2, · · · , pt,h from the source node s to each sink node
t from Menger’s theorem†. For each t, let Bt be the set of
coding vectors, each of which is assigned to the latest con-
sidered edge in each path pt, j. Then we select a node v in a

topological order ofG and we assign a coding vector to each
outgoing edge of v such that all the coding vectors in Bt are
linearly independent for every t ∈ T .

In the case of a strongly k-secure network code, the
coding vectors in Bt must satisfy more conditions. In order
to describe the algorithm to construct a strongly k-secure
network code, we use the following notations.

Let bh, j, j = 1, 2, · · · , h, represent the j-th column vec-
tor of the identity matrix with rank h. For an edge e on a
path pt, j, f←t (e) stands for the adjacent preceding edge of e
on pt, j, i.e., tail(e) = head( f←t (e)), and b( f←t (e)) represents
the coding vector of edge f←t (e). In the case that e is an out-
going edge of the source s, f←t (e) does not exist. But, for
the sake of convenience to simplify the description of algo-
rithm, we define that b( f←t (e)) = bh, j if e on path pt, j is an
outgoing edge of s.

For a node e in E, T (e) represents the set of sink nodes
t such that the node e is on the path pt, j for some j. Let
V̂ ≡ {v ∈ V | v is on a path pt, j for some t and j} and Ê ≡
{e ∈ E | e is on a path pt, j for some t and j}. For V̂, let QV̂
be the queue of nodes in V̂ such that the order is determined
by a topological order of G. Note that the first node in QV̂
is the source node s.

Let Ir be the set of the first r column vectors of the
identity matrix with rank h, i.e. Ir ≡ {bh,1, bh,2, · · · , bh,r}.
Then, a subset of Ir is represented by I(�)

r if the subset has �
column vectors. Similarly, forZ which is a set to store cod-
ing vectors assigned to edges in the following algorithm, a
subset ofZ is represented byZ(�) if the subset has � coding
vectors. Furthermore, for a set of column vectorsA, dimA
stands for the dimension of the vector space spanned byA.

Algorithm 1 (strongly k-secure network coding):

1. For a given graph G, obtain h edge-disjoint paths
pt,1, pt,2, · · · , pt,h for each t ∈ T and QV̂.

2. InitializeBt asBt = {bh,1, bh,2, · · · , bh,h} for each t ∈ T ,
and letZ = ∅.

3. Let v be the first node of QV̂. Then, repeat the follow-
ing for each outgoing edge e ∈ Ê of the node v.

a. To the edge e, assign a column vector b(e) that
satisfies the following three conditions.

i. b(e) can be generated by a linear combination
of coding vectors {b( f←t (e)), t ∈ T (e)}.

ii. For each t ∈ T (e), b(e) must be linearly in-
dependent from the coding vectors included
in Bt \ {b( f←t (e))}.

iii. b(e) must satisfy for any I(i)
r and Z(h−i−1),

0 ≤ i ≤ r, that

dim(I(i)
r ∪ {b(e)} ∪ Z(h−i−1))

= i + dim({b(e)} ∪ Z(h−i−1)).

b. For each t ∈ T (e), update Bt as Bt = (Bt \
†h edge-disjoint paths can be easily obtained by, for instance,

Ford-Fulkerson’s algorithm. [14, Sect. 9.2].
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{b( f←t (e)}) ∪ {b(e)}. Also update Z as Z = Z ∪
{b(e)}.

4. Remove v from QV̂. If QV̂ is not empty, go to step 3.
Otherwise, assign the zero column vector to all edges
in E \ Ê, and terminate this algorithm.

Note that the conditions i and ii in Step 3-a correspond
to the conditions 2 and 3 in Definition 2, respectively. Fur-
thermore, the condition iii in Step 3-a corresponds to the
condition (b) in Theorem 2, which can guarantee the prop-
erty of strongly k-secure network coding given in Defini-
tion 4. We also note that in step 3, b( f←t (e)) is always in-
cluded in Bt because a node v is treated in a topological
order and G has no loop. We also note that step 3 works in
any oder of the outgoing edges of v.

In the case that the cardinality of Fq is sufficiently large
and r ≤ h − k, we can always give a coding vector b(e)
that satisfies the three conditions shown in step 3. For in-
stance, generate b(e) as a random linear combination of
{b( f←t (e)), t ∈ T (e)}, and check whether it satisfies the con-
ditions ii and iii. If the conditions are not satisfied, regener-
ate another b(e). If q is very large compared with the min-
imum required size of q, a desired b(e) can be obtained by
one or a few trials. On the other hand, in the case that q
is not large, we can exhaustively check all vectors b(e) that
can be genrated from {b( f←t (e)), t ∈ T (e)}. In this case, the
number of trials can be bounded by q|T (e)|.

If we want to get a weakly k-secure network code rather
than a strongly k-secure network code, we can easily obtain
it by modifying only the step 3-a-iii in Algorithm 1 as fol-
lows.

Algorithm 2 (weakly k-secure network coding):

3.-a.-iii. b(e) must satisfy for anyZ(h−r−1) that

dim(Ir∪{b(e)} ∪ Z(h−r−1))

= r + dim({b(e)} ∪ Z(h−r−1)).

This condition also corresponds to the condition (a)
shown in Theorem 2 for the weakly secure ramp SSS.
Clearly the condition in Algorithm 2 is weaker than the con-
dition in Algorithm 1.

Remark 3: In this paper, we assume that adversaries can
wiretap any edges in E. But, in the case that adversaries can
wiretap any edges only in a set A ⊂ E, it suffices to apply
the step 3-a-iii and the updateZ = Z∪{b(e)} in the step 3-b
only for the edges included inA∩ Ê in Algorithms 1 and 2.

Some examples of strongly k-secure network coding
will be shown in Sect. 5.

4. Transform from a Nonsecure Network Code to a
Strongly Secure Network Code

In the previous section, we showed how to construct
strongly (or weakly) k-secure network code. But, in this sec-
tion, we consider how to realize strongly k-secure transmis-
sion by using a given nonsecure network code. Our scheme

is based on the FMSS scheme [4], which can transform a
nonsecure network code to a k-secure network code.

For a given network G = (V,E), assume that a linear
network code Z is already given, but this code may not be se-
cure. The problem is to find a method to realize the strongly
k-secure transmission of a secret S r = (S 1, S 2, · · · , S r) by
using the network code Z.

Let Yh = (S 1, S 2, · · · , S r,R1,R2, · · · ,Rl), h = r + l,
where Rl = (R1,R2, · · · ,Rl) is a tuple of random numbers
and all symbols of Yh are independent and uniformly dis-
tributed over X = Fq. Instead of Yh, we send a linearly
transformed message Xh = YhM−1 from a source node s to
the sink nodes by using the network code Z. M is a non-
singular matrix with size h × h and we assume that the in-
formation of M is public. Since Xh can be decoded at each
sink node for the network code Z, S r can be recovered by
calculating Yh = XhM at the sink node.

The informations on all edges are given by XhZ =
YhM−1Z. Hence, in this case, the matrix M−1Z, instead of
Z, randomizes the secret S r to attain secure network cod-
ing. The following theorem gives the necessary and suffi-
cient conditions such that M attains the strongly k-secure
network coding.

Theorem 4: The matrix M can attain the strongly k-secure
network coding if and only if any k+r column vectors, which
are obtained by picking up k+ j linearly independent column
vectors of Z and r − j column vectors of the first r column
vectors of M, are linearly independent for any j, 0 ≤ j ≤
r − 1.

Theorem 4 holds for any q. But, if q is not large
enough, there might not exist a matrix M that satisfies the
conditions shown in Theorem 4. Since the dimension of
each column vector is h, we can conclude from Theorem 4
that a strongly k-secure M exists if and only if k + r ≤ h,
i.e. k ≤ l = h − r, in the case that q is sufficiently large.
We remark that the size of q becomes smaller as k becomes
smaller as shown in Sect. 6. This property coincides with the
result shown in [4] which treats k-secure network coding.

In order to prove Theorem 4, we first show the next
Lemma 1.

Lemma 1: Assume that adversaries wiretap all edges in
A ⊂ E for Yh = Xh M. Then, the following conditions are
equivalent.

A : H(S r |YhM−1ZA) = H(S r).
B : spnZA ∩ spn{M(r)} = {0}.

In the above, M(r) represents the matrix that consists of the
first r columns of M, “spn” stands for the space spanned by
the columns of a matrix, and 0 is the zero column vector.

Proof. Instead of the equivalence between A and B, we
prove the equivalence of the following conditions, which are
the negatives of A and B, respectively.

Ā : H(S r |YhM−1ZA) = H(S r |XhZA) < H(S r).
B̄ : spnZA ∩ spn{M(r)} � {0}.
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Since we consider only linear network coding, the condition
Ā occurs if and only if there exist nonzero row vectors a ∈
F

r
q and b ∈ F|A|q such that

S raT + XhZAbT = 0 (9)

where aT represents the transpose of vector a. Because of
S r = Xh M(r), Eq. (9) means that

XhM(r)aT + XhZAbT = 0 (10)

Since the above relation must hold for any Xh, we obtain
M(r)aT + ZAbT = 0, which means condition B̄.

The next corollary can be derived easily from
Lemma 1.

Corollary 1 ([4]): Matrix M can attain k-secure transmis-
sion if and only if any k linearly independent column vectors
of Z and M1, · · · ,Mr are linearly independent.

Now we show the proof of Theorem 4.
The proof of Theorem 4. Assume that adversaries wiretapA
with rankZA = k + j. Then, in order to realize the strongly
k-secure network coding, Eq. (7) must be satisfied. Hence,
from Lemma 1, we have that spnZA ∩ spn{Mi1 , · · · ,Mir− j } =
{0}, which coincides with the statement in the theorem. �

When the cardinality q of Fq is sufficiently large, a
strongly k-secure M can easily be constructed. But, in the
case that the cardinality q is not large, a strongly k-secure M
may not exist. The necessary size of q will be discussed in
Sect. 6 for the case of k < l.

5. Some Examples of Strongly Secure Network Codes

In this section, we show some examples of k-secure network
codes. Since coding vector Z in Sect. 3 corresponds to M−1Z
in Sect. 4, we show only the examples of M−1Z.

Consider a nonsecure linear network code Z shown in
Fig. 3, where the column vector attached at each edge is
the coding vector of the edge. When we transmit S 3 =

(S 1, S 2, S 3) in this network, this code Z is not secure be-
cause, for instance, S 1 leaks out if an edge with coding vec-
tor [1, 0, 0]T is wiretapped.

Now we convert this nonsecure network code Z to a
k-secure network code M−1Z with k = l = 1 and r = 2.
Although Z has 15 columns for this network, we describe
only the columns that have different values for simplicity in
the following.

Z =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Furthermore, we assume that the cardinality q is given by
q = 5, i.e. F5 = {0, 1, 2, 3, 4}

Let Ms and Mw be the matrices to realize strongly and
weakly k-secure network coding, respectively. Then Ms and
Mw can be obtained from Theorem 4 and Corollary 1, re-
spectively, for instance, as follows.

Fig. 3 An example: A non-secure network code.

Ms =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 2 0
1 1 1
2 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , M−1
s =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
3 0 4
4 0 3
3 1 3

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (11)

Mw =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 2 1
0 2 0
1 3 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , M−1
w =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0 1 1
0 3 0
1 3 4

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (12)

In the case of weakly 1-secure transmission, the sym-
bol on each edge is given by

(S 1, S 2,R1)M−1
w Z = (S 1, S 2,R1)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0 1 1 1 2
0 3 0 3 3
1 3 4 4 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
(13)

We can easily check that adversaries cannot get any infor-
mation about (S 1, S 2) even if they wiretap any one edge.
But, if they wiretap two edges with coding vectors [0, 0, 1]T

and [1, 0, 4]T, S 1 leaks out perfectly.
In the case of strongly 1-secure transmission, the sym-

bol on each edge is given by

(S 1, S 2,R1)M−1
s Z = (S 1, S 2,R1)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
3 0 4 3 4
4 0 3 4 3
3 1 3 4 4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(14)

In this case, adversaries cannot get any information about
S 1 nor S 2 even if they wiretap any two edges.

Next we convert the nonsecure Z to a strongly 0-secure
M−1

s Z with r = 3 and X = F7 = {0, 1, 2, 3, 4, 5, 6}. Note
that weakly 0-secure codes are nonsense because they are
nonsecure, but strongly 0-secure codes are useful as shown
below. A matrix Ms, which satisfies Theorem 4, is given by,
for instance,

Ms =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1
2 3 4
3 5 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , M−1
s =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
4 4 1
3 5 5
1 5 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (15)
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Then, the symbol on each edge is given by

(S 1, S 2, S 3)M−1
s Z = (S 1, S 2, S 3)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
4 4 1 1 5
3 5 5 1 3
1 5 1 6 6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(16)

In this case, when adversaries wiretap any one edge, no in-
formation leaks out for every pair of two S i. Furthermore,
even if adversaries wiretap any two edges, no information
leaks out for every S i. Note that the coding rate of strongly
0-secure M−1

s Z is the same as nonsecure Z because r = 3 is
used. But, M−1

s Z is much more secure than Z. Therefore,
strongly k-secure network coding is useful even in the case
of k = 0.

6. Sufficient Alphabet Size for Realization

In Sects. 3 and 4, we showed that the strongly secure net-
work coding can be realized if alphabet size q is sufficiently
large. However, if q is too small, network coding cannot be
realized as shown in the example of Fig. 2. In this section,
based on the idea of FMSS [4], we clarify in the case of
k < l how large q is sufficient to construct strongly secure
network codes proposed in Sects. 3 and 4.

First, we define some notations.
For a given linear network code Z, let SZ be the kernel

space of Z, which consists of all row vectors x ∈ F|E|q satisfy-
ing ZxT = 0. Since Z is a matrix with size h×|E|, the dimen-
sion of SZ is at most |E|−h. hence, SZ can be represented by
SZ = {aΛ|a ∈ F|E|−h

q }, where Λ is a generator matrix of the
kernel space SZ , and the size ofΛ is (|E|−h)×|E|. We define
a distance between two matrices with the same column size
|E|. Let P and Q are matrices with sizes α × |E| and β × |E|,
respectively. Then the distance δ(P,Q) is defined by

δ(P,Q) = min
a,b:

a∈Fαq ,a�0,b∈Fβq

dH(aP, bQ)

where dH(·, ·) is the Hamming distance between two vectors
in F|E|q . In the space of F|E|q , let Volq(�, |E|) be the volume of
the sphere with radius � which is measured by the Hamming
distance. Note that Volq(�, |E|) does not depend on a center
vector.

The following theorems were proved by FMSS [4].

Theorem 5 ([4]): For a given Λ, there exists a matrix M−1

to realize the k-secure network coding for S r if and only if
there exists a matrix B with size r×|E| satisfying δ(Λ, B) > k.

This theorem means that the problem to obtain the ma-
trix M−1 is equivalent to the problem to obtain the matrix B
that satisfies δ(Λ, B) > k for a given Λ. Actually, M can be
constructed as M(r) = ZBT. For the latter problem, the next
theorems hold.

Theorem 6 ([4]): Assume that a matrix B with size r×|E| is
selected randomly from all matrices in Fr×|E|

q . Then, it holds
for any ε > 0 and k = (h − r)/(1 + ε) that

Pr{δ(Λ, B) > k} ≥ 1 − PBAD,

where PBAD is defined by

PBAD = q−(1+ε)kVolq(k, |E|). (17)

Theorem 7 ([4]): If k + r < h and

h =
log |E|
log q

+
log Volq(k, |E|)

log q

− 2 log |E| − log q − log ln q, (18)

then, there exists a matrixΛ such that any matrix B with size
r × |E| does not satisfy δ(Λ, B) > k.

A sufficient condition to realize k-secure network cod-
ing can be derived from Theorems 6 and 7. It is shown in [4]
that in the case that r = h−l for k < l, the sufficient condition
of alphabet size q is given by q > (k + 1)

1
l−k · |E| k

l−k . Hence,
letting l = 2k, we can conclude that the sufficient size is
given by q � |E|. Similarly, in the case of k = Θ (|E|), it is
given by q = |E|Ω( k

l−k ). Furthermore, it can be obtained from
Theorems 5 and 6 that for the case of l = k, the sufficient

size is given by q = |E|Ω
(√

k/ log k
)
.

Now we consider the case of the strongly k-secure net-
work coding. Let D be a nonempty subset of {1, 2, · · · , r},
i.e. D ⊆ {1, 2, · · · , r} and D � ∅, and let BD be the matrix
with size |D|× |E| which is constructed by concatenating ev-
ery row of B correspondingD. Then, the following theorem
holds.

Theorem 8: For a given Λ, there exists a matrix M−1 to
realize the strongly k-secure network coding for S r if and
only if there exists a matrix B with r × |E| satisfying

δ(Λ, BD) > k + r − |D|,
for anyD ⊆ {1, 2, · · · , r},D � ∅ (19)

Proof. This theorem holds obviously from Theorems 4
and 5. �

From Theorem 8, we can derive a sufficient condition
of q to realize the strongly k-secure network coding by con-
sidering the condition given by Eq. (19).

Theorem 9: Assume that a matrix B with size r × |E| is
selected randomly from all matrices in Fr×|E|

q . Then, it holds
that

Pr
{
δ(Λ, BD) > k + r − |D|,∀D ∈ 2{1,2,··· ,r} \ {∅}

}
> 1 − P̂BAD, (20)

where P̂BAD is defined by

P̂BAD = (k + r)2r |E|r+k−1qr+k−h. (21)

Proof. For eachD, let BADD be the set of vectors which are
within k + r − |D| in the Hamming distance from the linear
column space of Λ. Then, BADD satisfies

|BADD| ≤ q|E|−hVolq(k + r − |D|, |E|) (22)
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Hence, the randomly selected B satisfies that

Pr{∃x ∈ F|D|q s.t. xBD ∈ BADD}
≤ q|D| Pr{xBD ∈ BADD}
≤ q|D|q|E|−hq−|E|Volq(k + r − |D|, |E|)
= q|D|−hVolq(k + r − |D|, |E|) (23)

=1 q|D|−h
k+r−|D|∑

i=0

(q − 1)i

(
|E|
i

)

<2 qk+r−h(k + r − |D| + 1)

(
|E|

k + r − |D|

)

<3 qk+r−h(k + r − |D| + 1)|E|k+r−|D|, (24)

where the numbered equality and inequalities hold from the
following relations.

1. Volq(�, |E|) =
∑�

i=0(q − 1)i

(
|E|
i

)

2.
∑�

i=0(q − 1)i

(
|E|
i

)
≤ (l + 1)(q − 1)l

(
|E|
l

)
for q ≥ 2

3.

(
|E|
i

)
< |E|i

If there exits a D such that xBD ∈ BADD, then B does
not satisfy the condition of Pr{· · · } in Eq. (20). Hence, we
have that

1 − Pr{· · · }
= Pr{∃D,∃x ∈ F|D|q s.t. xBD ∈ BADD}

= Pr

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r⋃

i=1

⋃
D:|D|=i[

∃x ∈ F|D|q s.t. xBD ∈ BADD
]}

≤4
r∑

i=1

∑
D:|D|=i

Pr{∃x ∈ F|D|q s.t. xBD∈BADD}

<5
r∑

i=1

(
r
i

)
qk+r−h(k + r − i + 1)|E|k+r−i

=6
r−1∑
j=0

(
r
j

)
qk+r−h(k + j + 1)|E|k+ j

<7 (k + r)2r |E|k+r−1qk+r−h

= P̂BAD (25)

The numbered equality and inequalities 4–7 hold because

4. the union bound is applied,

5. the number of D with |D| = i is given by

(
r
i

)
, and

Eq. (24) is substituted,
6. j = r − i is substituted,

7.
∑r

j=0

(
r
j

)
= 2r.

�
We note from Eq. (21) that if

q > (k + r)
1

l−k 2
r

l−k |E|
k+r
l−k (26)

holds for l = h − r and l > k, we have that P̂BAD < 1. This
means from Theorem 9 that there exists at least one B that
satisfies Eq. (19). Hence, we can conclude from Theorem 8
that if q satisfies Eq. (26) for l > k, then we can realize the
strongly k-secure network coding.

In the case of k = Θ(|E|), the next theorem also holds.

Theorem 10: Let k = γ|E| for 0 < γ < 1 and let ε be the

constant satisfying k = h−r
1+ε . Then, if q ≥ 2

r
|E| +1

εγ−o(1) for o(1) =
logq(1+γ|E|)

|E| , there exists a matrix B that satisfies Eq. (19).

Proof. Let Hq(w) = w logq(q−1)−w logq w−(1−w) logq(1−
w). Then, it satisfies the following relations if k = γ|E| [15,
Lemma 2.10.3].

Hq(w) ≤ w +
1

log q
(27)

log Volq(k, |E|)
log q

<

(
Hq

(
k
|E|

)
+ o(1)

)
|E| (28)

It holds from Eq. (23) that

Pr{∃x ∈ F|D|q s.t. xBD ∈ BADD}
≤ q|D|−hVolq(k + r − |D|, |E|)

< q|D|−hq
(
Hq

(
k+r−|D|
|E|

)
+o(1)

)
|E|

≤ q|D|−hq
(

k+r−|D|
|E| +

1
log q+o(1)

)
|E|

= qk+r−hq
(

1
log q+o(1)

)
|E|, (29)

where the second and third inequalities follow from
Eqs. (28) and (27), respectively.

Furthermore, by taking the union bound for all D, the
following bound is obtained for the probability Pr{· · · } in
Eq. (20).

1−Pr{· · · }
= Pr{∃D,∃x ∈ F|D|q s.t. xBD ∈ BADD}

<

r−1∑
i=0

(
r
i

)
qk+r−hq

(
1

log q+o(1)
)
|E|

< 2rqk+r−hq
(

1
log q+o(1)

)
|E|

= q
r

log q q−εγ|E|q
(

1
log q+o(1)

)
|E|

= q

( r
|E| +1

log q −εγ+o(1)

)
|E|

(30)

We note that if
r
|E|+1

log q < εγ−o(1), i.e. q ≥ 2
r
|E| +1

εγ−o(1) , then Eq. (30)
becomes less than 1. This means that this theorem holds
from Theorems 8 and 9. �

From the relation k = (h − r)/(1 + ε), ε is given by
ε = (l − k)/k for l = h − r. Hence, from Theorem 10, there

exists a strongly k-secure network code if q = 2Ω
(

k
l−k

(
1+ r
|E|

))
.
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Table 1 Sufficient alphabet size q.

k < l k = l

k = o(|E|) k = Θ(|E|)

k-secure Θ

(
|E|

k
l−k

)
2
Ω

(
k

l−k

)
|E|
Ω

(√
k

log k

)

strongly

k-seruce
Θ

(
|E|

k+r
l−k

)
2
Ω

(
k

l−k

(
1+ r
|E|

))
open problem

7. Concluding Remarks

In this paper, based on the strongly secure ramp secret shar-
ing schemes, we proposed the strongly k-secure linear net-
work coding schemes, which are much more secure than
previous known secure network schemes [3], [4]. We gave
the direct construction method of the strongly k-secure lin-
ear network coding in Sect. 3. We also showed in Sect. 4 that
a nonsecure linear network code can easily be transformed
to a strongly k-secure network code if the alphabet size of
information is sufficiently large. Furthermore, we derived
some sufficient conditions of alphabet size to realize such
transform for the case of k < l in Sect. 6.

The sufficient conditions of alphabet size q can be sum-
marized as Table 1, where the sufficient conditions of k-
secure network coding are cited from [4]. We note from
the table that in the case of k = l, a nontrivial sufficient con-
dition has not been obtained yet for the strongly k-secure
network coding. But, q must be larger than the case of k-

secure network coding, i.e. q = |E|Ω
(√

k
log k

)
.

As shown in Sect. 3, we can assign the zero vector to
all edges that are not included in the edge-disjoint paths of
all sink nodes. Hence, in the evaluation of Sect. 6, the size
|E| can be decreased to the number of edges included in all
the edge-disjoint paths of all sink nodes.
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