
1346
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.7 JULY 2010

PAPER

A Randomness Test Based on T-Complexity∗

Kenji HAMANO†a), Member and Hirosuke YAMAMOTO†b), Fellow

SUMMARY We propose a randomness test based on the T-complexity
of a sequence, which can be calculated using a parsing algorithm called T-
decomposition. Recently, the Lempel-Ziv (LZ) randomness test based on
LZ-complexity using the LZ78 incremental parsing was officially excluded
from the NIST test suite in NIST SP 800-22. This is caused from the prob-
lem that the distribution of P-values for random sequences of length 106

is strictly discrete for the LZ-complexity. Our proposed test can overcome
this problem because T-complexity has almost ideal continuous distribution
of P-values for random sequences of length 106. We also devise a new se-
quential T-decomposition algorithm using forward parsing, while the orig-
inal T-decomposition is an off-line algorithm using backward parsing. Our
proposed test can become a supplement to NIST SP 800-22 because it can
detect several undesirable pseudo-random numbers that the NIST test suite
almost fails to detect.
key words: T-code, T-complexity, Lempel-Ziv complexity, NIST SP 800-22,
NIST statistical test suite, multiplicative congruential generator

1. Introduction

A pseudo-random sequence is often used as a secret key
stream or secret information in many cryptographic sys-
tems because the generation of a true random sequence re-
quires high cost. But such pseudo-random sequences must
be undistinguishable from true random sequences not to pro-
vide any clue to attackers. Hence, randomness tests to eval-
uate the randomness of sequences are very important.

In 2001, the National Institute of Standards and Tech-
nology (NIST) of the U.S. government released NIST SP
800-22 [25], which describes the NIST test suite, a widely
used battery of statistical tests in the field of cryptography.
But some problems have been found in the NIST test suite.
It was reported in [6], [7], [18], [21] that the DFT test and the
Lempel-Ziv complexity test (LZ test) in the NIST test suite
have some problems. Furthermore, it was found in [20] that
the recommended input size of the approximate entropy test
should also be modified. The NIST updated some values of
parameters for the DFT test and removed the LZ test from
the software of the NIST test suite in 2004. But, no official
explanation was given about the reason why the LZ test was

Manuscript received September 7, 2009.
Manuscript revised March 5, 2010.
†The authors are with the Department of Complexity Science

and Engineering, The University of Tokyo, Kashiwa-shi, 277-8561
Japan.

∗The material in this paper was presented in part at the
ISITA2008 [12], and all the figures of this paper are reused from
[12] under the permission of the IEEE.

a) E-mail: hamano@it.k.u-tokyo.ac.jp
b) E-mail: Hirosuke@ieee.org

DOI: 10.1587/transfun.E93.A.1346

removed. The DFT test with modified parameter values is
still not ideal because more accurate value of a parameter
for the DFT test was derived in [11]. Okutomi et al. [27]
evaluated the randomness of sequences generated by DES
and SHA-1 on the basis of the NIST test suite, and showed
that the overlapping template matching test and the Mau-
rer’s universal statistical test (Universal test) in the NIST
test suite did not follow the theoretical binomial distribution
if DES or SHA-1 can be assumed to be an ideal pseudo-
random number generator. The problem of the overlapping
template matching test was caused from inaccurate proba-
bility estimation for templates in the NIST test suite [9]. The
accurate probabilities given in [9] are described in NIST SP
800-22 Revision 1 [26] although they have not yet been im-
plemented in the NIST test suite (the Statistical Test Suite
Version 2.0b). Moreover, the revised Universal test based
on the model proposed by Coron [1] resolved the problems
of the original Universal test [17]. It is also reported in [8],
[28] that the probabilities used in the longest-run-of-ones
test in the NIST test suite need to be corrected. Further-
more, we showed in [11] that the NIST test suite fails to
detect non-random sequences with periodic small biases but
a randomness test based on all autocorrelation values can
detect. We also showed in [13] that the NIST test suite in-
cluding the linear complexity test (LC test) fails to detect
non-random sequences generated by concatenating two dif-
ferent M-sequences with low linear complexity, but a modi-
fied LC test can detect it. The defect of the original LC test
comes from the fact that the deviation from the ideal value
is evaluated only for the last part of the whole linear com-
plexity profile.

In 2008, the NIST released NIST SP 800-22 Revision
1 and officially excluded the LZ test from NIST SP 800-
22 [26]. The LZ test is a randomness test based on LZ-
complexity, which comes from the LZ78 data compression
algorithm [32]. After the LZ test is excluded, NIST SP 800-
22 includes no randomness test based on a data compres-
sion algorithm. In February 2009, the NIST announced on
the web that the NIST had discovered a problem with the
DFT test and advised disregarding the results of the DFT
test without detailed explanation.

According to [19], the main defect of the LZ test is
the distribution of P-value derived from the LZ-complexity
of a sequence. P-values of random sequences should take
the continuous uniform distribution U(0, 1). But, the empir-
ical distribution of P-values for random sequences of length
106 is strictly discrete even if the number of samples is very

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

HAMANO and YAMAMOTO: A RANDOMNESS TEST BASED ON T-COMPLEXITY
1347

large.
Doğanaksoy and Göloğlu [2] proposed a randomness

test based on the theoretical distribution of LZ-complexity
such that a sequence of length N is divided into N′ =

⌊
N
M

⌋
non-overlapping blocks of length M and the χ2-statistic
is calculated from N′ LZ-complexities obtained for every
block. The theoretical distribution for the number of se-
quences with a given LZ-complexity is calculated for length
M by two recurrence equations. But the value of M is re-
stricted to be relatively small (e.g., M ≤ 1024) because the
time complexity to compute the theoretical distribution is
very high, i.e., O

(
M5

log M

)
. By contrast, the NIST LZ test uses

the LZ-complexity for a whole sequence of length N = 106.
This restriction is a defect because this test does not eval-
uate the complexity of a long sequence directly and hence
this test cannot become a replacement of the NIST LZ test.

In this paper, we rely on T-complexity instead of LZ-
complexity. The T-complexity is defined based on T-codes,
which are variable-length self-synchronizing codes intro-
duced by Titchener [30]. T-code codewords are constructed
by a recursive hierarchical-pattern copying algorithm called
T-augmentation. A sequence can be encoded to a longest
codeword in the T-code set by T-decomposition, which cor-
responds to the inverse operation of T-augmentation. T-
decomposition parses a sequence into T-prefixes, the num-
ber of which is the T-complexity of the sequence†. In this
paper, we propose a randomness test based on T-complexity,
which can overcome the main defect of the NIST LZ test.

This paper is organized as follows. After briefly in-
troducing T-codes in Sect. 2, we give a new on-line T-
decomposition algorithm using tries†† to compute the T-
complexity of a sequence in Sect. 3. In Sect. 4, we pro-
pose a new randomness test based on T-complexity, and we
show some examples of undesirable pseudo-random num-
bers which the proposed test can detect considerably better
than the NIST test suite in Sect. 5.

2. T-Codes

We first introduce T-codes [4] and define some notions re-
lated to T-codes. Let A be a finite alphabet set. Let uv and
uk represent the concatenation of two strings u and v and
the concatenation of k copies of u, respectively. A series
of T-code sets Si, i = 1, 2, . . . , are constructed using the
following recursive formula called T-augmentation.

Si =

ki⋃
j=0

{pj
i u | u ∈ Si−1\{pi}} ∪ {pki+1

i }, (1)

where S0 = A and a string pi is selected from Si−1 and
ki ∈ N ≡ {1, 2, 3, · · · }. String pi and integer ki are called
a T-prefix and a T-expansion parameter, respectively. Si

is called a T-code set at T-augmentation level i. Si is also
represented as S(k1,k2,...,ki)

(p1,p2,...,pi)
. A simple T-code set is a T-code

set such that T-expansion parameters are restricted to 1, i.e.,
k1 = k2 = · · · = 1. Figure 1 shows code trees corresponding

Fig. 1 Intermediate T-code setsSi, 0 ≤ i ≤ 4. (c©2008 IEEE [12], Fig. 1)

to T-code sets Si for the case of S5 = S(1,1,2,1,1)
(1,10,0,001010,00101011)

with A = {0, 1}. Each left and right branches are labeled 0
and 1, respectively. As described in the next section, using a
parsing algorithm called T-decomposition [5], we can parse
any sequence s into the following form

s = pkn
n pkn−1

n−1 · · · pk1
1 k0, (2)

where k0 ∈ A is a literal symbol and ki ∈ N, 1 ≤ i ≤ n. The
sequence s is related to one of the longest codewords in the
T-code set Sn = S(k1,k2,...,kn)

(p1,p2,...,pn). Furthermore, each pi can be
uniquely represented as

pi = p
k(i)

i−1
i−1 p

k(i)
i−2

i−2 · · · p
k(i)

1
1 k(i)

0 , (3)

where k(i)
0 ∈ A and 0 ≤ k(i)

j ≤ k j for j > 0. The T-complexity
of s is defined as

t =
n∑

i=1

log2(ki + 1),

when s is given by Eq. (2). It is worth noting that Sn has
2t =

∏n
i=1(ki + 1) internal nodes. Hence, the T-complexity

coincides with the number of bits necessary to represent all
internal nodes in its code tree where s corresponds to one of
the longest codewords. In the case of simple T-code sets, the
T-complexity t is equal to the number of T-prefixes, namely
n.

3. T-Decomposition Algorithm

The original T-decomposition algorithm [5], which is de-
scribed below as Algorithm-A, parses a sequence s back-
ward from the end to the head. So, it is an off-line algorithm
since a whole sequence is required before starting the algo-
rithm. Note that each T-prefix pi obtained by Algorithm-
A satisfies Eq. (3). Algorithm-A can be implemented with
O(N log N) time and space complexities when the length of
s is N [31].

†Strict definition of T-complexity is given in Sect. 2.
††A trie is an ordered-multiway-tree data structure used in com-

puter science [22].

1348
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.7 JULY 2010

Algorithm-A

A1 Let s be a given sequence. i :=0. S0 :=A. s := sa, where
a is an arbitrary symbol inA.

A2 Parse s into codewords in Si.
A3 If s becomes a single codeword in Si, i.e., s ∈ Si, then

exit.
A4 Let pi+1 be the second last codeword of s.
A5 If the same pi+1 occurs � times adjacently including the

second last codeword, let ki+1 :=�.
A6 i := i + 1. Generate Si by Eq. (1). Go back to A2.

We show an example of how Algorithm-A processes
s = 00101000101 for A = {0, 1}. First, an arbitrary
symbol a ∈ A is appended to s, i.e., s := sa. Then s
is parsed into codewords in S0 (= A). We obtain s =
0.0.1.0.1.0.0.0.1.0.1.a, where boundaries are indicated by
dots. p1 is given as the second last codeword “1” and
k1 = 1. Then, S1 = {0, 10, 11} is constructed from p1, k1,
and S0. For i = 1, s is parsed into codewords in S1 as
s = 0.0.10.10.0.0.10.1a, we obtain p2 = 10, k2 = 1,
S2 = {0, 11, 100, 1010, 1011}. For i = 2, s is parsed into
codewords in S2 as s = 0.0.1010.0.0.101a, and we obtain
p3 = 0. Since p3 occurs twice adjacently including the sec-
ond last codeword, we have k3 = 2, and

S3 = {11, 100, 1010, 1011, 011, 0100, 01010, 01011,

000, 0011, 00100, 001010, 001011}.
For i = 3, s is parsed into codewords in S3 as s =
001010.00101a, and we obtain p4 = 001010 and k4 = 1.
For i = 4, s is parsed into codewords in S4 as s =
00101000101a. Finally s satisfies s ∈ S4, and the algo-
rithm terminates. Then, we have s = 00101000101a =
pk4

4 pk3

3 pk2
2 pk1

1 a, where s is one of the longest codewords in
S4 (See the code tree of S4 in Fig. 1.).

The above Algorithm-A is an off-line algorithm. But
we propose a new T-decomposition which parses s se-
quentially to p1 p2 p3 · · · such that each pi satisfies Eq. (3).
For simplicity, we consider a simple T-code sets in this
section†. Let s = s1s2 · · · sN be a sequence of length
N and let s j

i = sisi+1 · · · s j be a subsequence of s.
As an example, let us consider a case that a sequence
s = s26

1 = 00111110011111000111000100 is parsed as
p1 p2 p3 p4 p5 p6 p7 p8, where each pi is given as follows.

p1 = 0
p2 = p11 (= 01)
p3 = 1
p4 = p31 (= 11)
p5 = p3 p10 (= 100)
p6 = p4 p31 (= 1111)
p7 = p5 p21 (= 100011)
p8 = p5 p2 p10 (= 1000100)

Note that these pi’s satisfy Eq. (3) with k(i)
j ∈ {0, 1}, and each

pi can be obtained by using tries t0, t1, t2, . . . , ti−1 shown in
Fig. 2. Each trie ti is constructed from {p1, p2, . . . , pi} such
that pj, 1 ≤ j ≤ i, corresponds to a path from the root to
node j. Nodes with index 0 don’t have correspondence to

Fig. 2 Trie growth for a sequence s = 00111110011111000111000100.
(c©2008 IEEE [12], Fig. 2)

any pj, and the root node has no index.
Assume that s13

1 = 0011111001111 is parsed as
p1 p2 p3 p4 p5 p6 and tries t j, 0 ≤ j ≤ 6, are already con-
structed from {p1, p2, · · · , p6} as shown in Fig. 2. Then, T-
prefix p7 is obtained from the tries as follows. First, we trace
trie t6 from the root to a leaf node following the remaining
sequence of s, s26

14 = 100011 · · · . Since we reach leaf node
5 in t6, we can know that the first part of p7 consists of p5,
i.e., p7 = p5 · · · . Since p5 is parsed, the second pj must sat-
isfy j ≤ 4. Hence, we next use trie t4. Again, we trace trie
t4 from the root to a leaf node following the remaining se-
quence of s, s26

17 = 011 · · · . Then, since we reach leaf node
2 in t4, we can know that the second part of p7 is p2, i.e.,
p7 = p5 p2 · · · . Since p2 is parsed, we next use trie t1. In
trie t1, we cannot move from the root when we follow the
remaining sequence of s, s26

19 = 1 · · · . In this case, the next
symbol “1” becomes the literal symbol of p7, and p7 is given
as p5 p21.

Trie t7 can be created by adding p7 into trie t6. Sim-
ilarly, p8 is obtained as follows. Following the remaining
sequence of s, s26

20 = 1000100, we trace trie t7 from the root
toward a leaf node. But, in this case, the tracing ends at
a node with index 0 instead of a leaf node. This means
that s26

20 (= 1000100) does not coincide with any pj and
hence it must be parsed with shorter pj. So, we move back
to the nearest node with a positive index, and we find that
p8 = p5 · · · . We next use trie t4 since p5 is parsed. After
similar iterations, p8 is given as p5 p2 p10.

Sometimes the last T-prefix pn does not end with a lit-
eral symbol. For instance, in the case that s19

1 is the same as

†The case of generalized T-code sets is treated in the appendix.

HAMANO and YAMAMOTO: A RANDOMNESS TEST BASED ON T-COMPLEXITY
1349

the previous example and s ends by s22
20 = 100, p8 is given

as p8 = p5. In this case, similar to the above case, we move
back to the nearest node with a positive index. After similar
iterations, p8 can be parsed as p8 = p5 = p3 p10.

In the above, we assumed for simplicity that all tries ti
are constructed separately. But, we note that trie ti can sim-
ulate any t j for 0 ≤ j < i by considering only the nodes with
index l satisfying l ≤ j in the trie ti. Hence it is sufficient
that only the latest trie is memorized.

The above parsing algorithm can be described formally
as the following Algorithm-B, where λ stands for a null
string, and “u := uv” means that string u is concatenated by
string v.

Algorithm-B (Forward T-decomposition Algorithm for
Simple T-codes)

B1 (Initialization)
Let s be a given sequence.
i :=1.
Create t0.

B2 pi :=λ. ν := i − 1.
B3 Following s, trace a path from the root toward a leaf

node in trie tν† as far as possible. Let v represent the
farthest node that we can reach.

• If v is a node with a positive index and s is not
exhausted, then go to B4.
• If v is a node with index 0 or s is exhausted, then

go to B5.
• If v is the root, i.e., we cannot move from the root,

then go to B6.

B4 Let j be the index of node v.
pi := pi p j.
ν := j − 1.
Remove pj from the head of s.
Go back to B3.

B5 If there exists no node with a positive index between
node v and the root, then go to B6. Otherwise, move
back from node v toward the root in trie tν. Let v̂ be
the first node with a positive index that we find in the
moving back. Newly let v represent the node v̂, and go
back to B4.

B6 pi := piω, where ω is the first symbol of s.
Output pi.
Remove ω from the head of s.
If s = λ, exit.
Update trie ti−1 to ti by adding pi into ti−1.
i := i + 1.
Go back to B2.

Table 1 shows average time of ten trials necessary to
compute the LZ-complexity and the T-complexity (Algo-
rithms A and B) for random sequences with 3 GHz CPU.
Algorithm-A is implemented on the basis of [31] and its
computation time is about O(N) for a random N-bit se-
quence. On the other hand, we note from Table 1 that
Algorithm-B has about O(N1.2) computation time. How-
ever, Algorithm-B can process a given sequence on-line, and

Table 1 Comparison of average time to compute the LZ-complexity and
the T-complexity of a random sequence for various lengths.

Length LZ-complexity Algorithm-A Algorithm-B
(bits) (seconds) (seconds) (seconds)
210 2.36 × 10−4 1.54 × 10−4 5.63 × 10−4

211 2.54 × 10−4 2.46 × 10−4 6.78 × 10−4

212 2.98 × 10−4 4.39 × 10−4 1.13 × 10−3

213 3.96 × 10−4 8.28 × 10−4 1.36 × 10−3

214 7.81 × 10−4 1.59 × 10−3 1.97 × 10−3

215 1.01 × 10−3 3.34 × 10−3 2.88 × 10−3

216 1.42 × 10−3 6.85 × 10−3 4.77 × 10−3

217 2.30 × 10−3 2.06 × 10−2 8.58 × 10−3

218 4.10 × 10−3 5.14 × 10−2 1.67 × 10−2

219 7.22 × 10−3 1.10 × 10−1 3.29 × 10−2

220 1.35 × 10−2 2.37 × 10−1 6.80 × 10−2

221 2.60 × 10−2 4.51 × 10−1 1.51 × 10−1

222 5.13 × 10−2 9.42 × 10−1 3.43 × 10−1

223 1.05 × 10−1 1.88 7.90 × 10−1

224 2.18 × 10−1 3.82 1.81

Algorithm-B is faster than Algorithm-A for 215 ≤ N ≤ 224.
Furthermore, Algorithm-B can compute the T-complexity
for a random sequence of length 106 ≈ 220 within about
0.07 seconds. This means that Algorithm-B can be practi-
cally used in a randomness test that we propose in the next
section.

4. Randomness Test Based on T-Complexity

We first compare two distributions of LZ-complexity and
T-complexity. We sampled 103 sequences of length 106

from Marsaglia’s random numbers [23], which are claimed
to be virtually unassailable sources of random bits. Figure 3
shows the empirical distribution of LZ-complexity and the
normal distribution in the form of ogive. It was assumed
in the NIST LZ test that the former distribution can be ap-
proximated by the latter distribution. But we note that the
empirical distribution of LZ-complexity is strictly discrete
although these two distributions are close to each other. This
means that the distribution of P-value also becomes discrete.
In contrast, as shown in Fig. 4, the empirical distribution of
T-complexity can be approximated well by the normal dis-
tribution. When the length of a sequence is increased to 108,
the empirical distribution of LZ-complexity can be treated
as a continuous distribution which can be approximated well
by the normal distribution. But it needs much larger time
and many memory resources to compute LZ-complexity.
Additionally, it is uncommon to evaluate random sequences
of length 108 with the NIST test suite because the same se-
quences must be evaluated by all randomness tests included
in the NIST test suite, some of which are time-consuming.

Next we investigate T-complexity profile by a moving
average model U(i) = ε(i)−ψε(i−1), where ε(i) is a random
variable following the standard normal distribution N(0, 1)
and ψ is a constant parameter. We used Mersenne twister
(MT) [24] to generate ε(i). MT is widely regarded as a high
quality pseudo-random number generator. U(i) outputs zero

†Trie tν is simulated by considering only the nodes with index
l satisfying l ≤ ν in trie ti−1.

1350
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.7 JULY 2010

Fig. 3 Empirical distribution of LZ-complexity (dots) and the normal
distribution N(69588.2, 8.557882) (solid line) for a sequence of length 106.
(c©2008 IEEE [12], Fig. 3)

Fig. 4 Empirical distribution of T-complexity (dots) and the normal dis-
tribution N(38720.6, 58.29372) (solid line) for a sequence of length 106.
(c©2008 IEEE [12], Fig. 4)

Fig. 5 T-complexity profiles for ψ = 0.0, 0.2, 0.4, 0.6, 0.8. Wider broken
lines correspond to larger ψ. (c©2008 IEEE [12], Fig. 5)

or one depending on its sign. The dependence between ad-
jacent bits becomes stronger as ψ becomes larger. Figure 5
shows T-complexity profiles for sequences of length 106 and
Fig. 6 is a magnified view of Fig. 5. Five values of ψ are
considered. We note from Figs. 5 and 6 that T-complexity
profiles can distinguish the level of dependence.

Let t be the T-complexity of a sequence. Under the null
hypothesis that the sequence is random, Z = t−μ

σ
approxi-

mately follows N(0, 1), where μ = 38720.6, σ = 58.2937.
The values of μ and σ were obtained experimentally from
4800 Marsaglia’s random sequences of length 106. If Z ∼
N(0, 1), P-value = erf

(
|Z|/√2

)
follows the uniform distri-

bution U(0, 1), where erf(x) = 2√
π

∫ ∞
x

e−u2
du. So, the distri-

bution of P-value derived by T-complexity can satisfy the as-

Fig. 6 Magnified view of Fig. 5. (c©2008 IEEE [12], Fig. 6)

Fig. 7 Empirical distribution of ξ (solid line) and the theoretical
distribution (broken line). (c©2008 IEEE [12], Fig. 7)

sumption of the NIST test suite. We sampled 103 sequences
of length 106 generated by the DES with the output feedback
mode [3], which is considered to be a reliable random num-
ber generator. The Kolmogorov-Smirnov test was applied
to the empirical distribution of P-value and U(0, 1). The test
result was that K+n = 1.21525 and K−n = 0.139923. Since
the critical point of significance level α = 5% is 1.2188, the
KS test concluded that the P-value follows U(0, 1).

Next, we consider pass ratio rα which is defined by

rα =
#{P-value : (P-value) ≥ α}

I
,

where #{A} stands for the number of occurrences of event
A, α is a given significance level, I is a given number of
trials, and the P-value is calculated from T-complexity t.
The pass ratio rα can be normalized by ξ = rα−(1−α)√

α(1−α)
I

. When

Xi, 1 ≤ i ≤ I, are Bernoulli random variables taking 1 with
probability 1 − α and 0 with probability α, Y =

∑I
i=1 Xi fol-

lows the binomial distribution with parameters I and α. So,
under the null hypothesis, ξ is expected to follow the distri-

bution of
Y
I −(1−α)√

α(1−α)
I

. In Fig. 7, this theoretical distribution is

described together with an empirical distribution of ξ based
on 103 samples of rα in the case that I = 103, α = 0.01 and
sequences of length 106 are generated by the DES with the
output feedback mode. The χ2 test was applied to these two
distributions using data shown in Table 2. The calculated
χ2 test statistic is 4.64. Since the upper 5% critical point
of the χ2 distribution with 6-degree of freedom is 12.592,
the χ2 test concluded that the empirical distribution of ξ fol-
lows the theoretical distribution. Therefore, a randomness

HAMANO and YAMAMOTO: A RANDOMNESS TEST BASED ON T-COMPLEXITY
1351

Table 2 Probabilities of ξ.

Range of ξ Expected Observed
(−∞,−2) 0.0264 0.0290
(−2,−1) 0.108 0.127
(−1, 0) 0.283 0.273

0 0.126 0.130
(0, 1) 0.328 0.316
(1, 2) 0.119 0.115
(2,∞) 0.0101 0.0100
Sum 1 1

test can be well-constructed by using the T-complexity of a
sequence.

From the above results, the procedure of a new ran-
domness test based on T-complexity can be constructed as
follows.

Test Procedure

C1 Set α and I to a given significance level and a given trial
number, respectively, e.g. α = 0.01 and I = 103.

C2 Generate a sequence of length N. Compute the T-
complexity t of the sequence.

C3 Compute z = t−μ
σ

.
C4 Compute P-value= erf

(
|z|√

2

)
.

C5 If the number of trials is less than I, go to C2.

C6 Compute rα =
#{P-value : (P-value) ≥ α}

I
.

C7 Compute ξ = rα−(1−α)√
α(1−α)

I

.

C8 Test the null hypothesis H0 : ξ ∼ N(0, 1).
C9 If H0 is rejected, conclude that sequences are non-

random.

Instead of steps C6–C9, you may follow the decision rule of
NIST SP 800-22 after collecting I P-values.

5. Experiments

Sequences of good random numbers, e.g. Marsaglia’s ran-
dom numbers and pseudo-random numbers generated by
the DES with the output feedback mode, can pass the pro-
posed test. But, it can detect some sequences of undesirable
pseudo-random numbers that cannot be detected well by the
NIST test suite as shown in the following examples.

Example 1
First, we consider pseudo-random numbers obtained

by a multiplicative congruential generator (MCG):
{

Xn+1 = 65539Xn mod 231

X0 = 1
(4)

It is well-known that these pseudo-random numbers are
undesirable because three adjacent numbers have a three-
dimensional lattice structure as shown in Fig. 8. We gen-
erated 103 sequences of length 106 by sequential concate-
nations of

⌊
Xi

223

⌋
(eight bits). In the case of the Marsaglia’s

random numbers, the mean and standard deviation of LZ-
complexity were μLZ = 69588.2 andσLZ = 8.55788, respec-
tively, and the mean and standard deviation of T-complexity

Fig. 8 View of 104 triples generated from the MCG given by Eq. (4).
(c©2008 IEEE [12], Fig. 8)

Table 3 Reject Ratios of the NIST test suite for MCG sequences.
Significance level was set to 0.01.

Test Name Reject Ratio
Monobit 0.010

Block Frequency 0.009
Cusum 0.011
Runs 0.007

Long Runs of Ones 0.014
Rank 0.009

Spectral DFT 0.000
Aperiodic Templates 0.021
Periodic Templates 0.010
Universal Statistical 0.015

Approximate Entropy 0.010
Random Excursions 0.021

Random Excursions Variant 0.013
Serial 0.037

Linear Complexity 0.009

were μT = 38720.6 and σT = 58.2937, respectively. On
the other hand, in the case of the MCG sequences, the mean
of LZ-complexity was 69584.2 ≈ μLZ − 0.46σLZ , and the
mean of T-complexity was 37768.4 ≈ μT − 16.3σT . Thus,
T-complexity can detect the non-randomness of the MCG
sequences more easily than LZ-complexity. The 103 MCG
sequences were evaluated using both the NIST test suite and
the proposed test. The default parameters were used in the
NIST test suite. The pass ratio of the proposed test was
rα = 0 (ξ = −314.6). On the other hand, the reject ra-
tios for the NIST test suite were very low as shown in Ta-
ble 3. Hence, the proposed test is considerably superior to
the NIST test suite to reject undesirable MCG sequences.
Additionally, we also tried the modified LZ test proposed in
[2], where significance level was set to 0.01. But, the reject
ratio was 0.006.

Example 2
Next, we considered non-random sequence Y =

Y0, Y1, Y2, · · · such that the size of each Yi is one byte (eight
bits). For i ≥ 0, Y3i and Y3i+1 are generated by MT, but
Y3i+2 is the lower eight bits of Y3i + Y3i+1. We generated 103

sequences of length 106. The mean of LZ-complexity was
69586.5 ≈ μLZ−0.20σLZ, and the mean of T-complexity was
38284.7 ≈ μT − 7.48σT . Thus, T-complexity can detect the

1352
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.7 JULY 2010

Table 4 Reject Ratios of the NIST test suite for sequences Y .
Significance level was set to 0.01.

Test Name Reject Ratio
Monobit 0.012

Block Frequency 0.008
Cusum 0.014
Runs 0.012

Long Runs of Ones 0.023
Rank 0.004

Spectral DFT 0.000
Aperiodic Templates 0.019
Periodic Templates 0.011
Universal Statistical 0.010

Approximate Entropy 0.015
Random Excursions 0.015

Random Excursions Variant 0.015
Serial 0.021

Linear Complexity 0.010

non-randomness of the sequences Y more easily than LZ-
complexity. The 103 sequences Y were evaluated using the
NIST test suite, the proposed test, and the modified LZ test.
The pass ratio of the proposed test was rα = 0 (ξ = −314.6).
On the other hand, the reject ratios for the NIST test suite
were very low as shown in Table 4, and the reject ratio of
the modified LZ test was 0.007. Hence, the proposed test
is also considerably superior to both the NIST test suite and
the modified LZ test to reject the non-random sequences Y .

It is worth noting that if (Y3i, Y3i+1) is perfect random,
each of (Y3i−1, Y3i) and (Y3i+1, Y3i+2) is also perfect random,
but (Y3i, Y3i+1, Y3i+2) is not random. We can easily construct
many kinds of non-random numbers with such characteris-
tics, but the NIST test suite is weak in the detection of such
non-random numbers. Therefore, our proposed randomness
test is indispensable as a supplement to the NIST test suite.

6. Conclusions

We proposed a new randomness test based on T-complexity.
In order to compute the T-complexity of a sequence, we
developed an on-line T-decomposition algorithm, called
Algorithm-B in this paper. Algorithm-B realizes forward
parsing like the LZ78 incremental parsing, whereas the orig-
inal T-decomposition is backward parsing. Algorithm-B is
efficient owing to the use of a trie structure, and hence it can
compute the T-complexity of a random sequence of length
106 within approximately 0.1 seconds on a computer with
3 GHz CPU. Since T-complexity has almost ideal continu-
ous distribution of P-values for random sequences, the pro-
posed test can overcome the main defect of the NIST LZ
test. We showed that the proposed test can detect undesir-
able pseudo-random numbers generated by the MCG and
the non-random sequences Y more easily than the NIST
LZ test, and the proposed test can detect such undesirable
pseudo-random numbers considerably better than not only
the NIST test suite but also the modified LZ test proposed in
[2]. Since the output form of our proposed test is the same
as that of the NIST test suite, it can easily be combined with
the NIST test suite as a supplement to NIST SP 800-22.

Finally we remark that since both the origi-
nal T-decomposition (Algorithm-A) and the forward T-
decomposition (Algorithm-B) are based on the same recur-
sive structure of T-codes, the original T-decomposition can
also be used for randomness testing in the same way as the
forward T-decomposition. But, Algorithm-B is faster than
Algorithm-A as shown in Table 1 and can process a given se-
quence on-line. Furthermore, the forward T-decomposition
has a better correspondence to the LZ78 incremental pars-
ing than the original T-decomposition. On the basis of the
forward T-decomposition, we can derive the expressions of
the T-complexity profile and the LZ-complexity profile in
a unified way using a differential equation technique [14],
and can design a sequential data compression scheme based
on T-codes [15], [16] that can compress the Calgary Corpus
[29] more efficiently than the UNIX compress, a variant of
LZ78.

Acknowledgement

The work of H. Yamamoto is supported in part by JSPS
Grand-in-Aid for Scientific Research, No. 22656085.

References

[1] J.S. Coron, “On the security of random sources,” Proc. PKC’99,
LNCS 1560, pp.29–42, Springer-Verlag, 1999.

[2] A. Doğanaksoy and F. Göloğlu, “On Lempel-Ziv complexity of
sequences,” Proc. SETA2006, LNCS 4086, pp.180–189, Springer-
Verlag, 2006.

[3] FIPS Pub 81, “DES modes of operation,” Dec. 1980.
[4] U. Günther, “Data compression and serial communication with gen-

eralized T-codes,” Journal of Universal Computer Science, vol.2,
no.11, pp.769–795, 1996.

[5] U. Günther, Robust Source Coding with Generalized T-codes, PhD
Thesis, The University of Auckland, 1998.

[6] K. Hamano, F. Satoh, and M. Ishikawa, “Randomness test us-
ing discrete Fourier transform,” Technical Report 6841, Techni-
cal Research and Development Institute, Japan Defense Agency,
Sept. 2003. (in Japanese)

[7] K. Hamano, “The distribution of the spectrum for the discrete
Fourier transform test included in SP800-22,” IEICE Trans. Fun-
damentals, vol.E88-A, no.1, pp.67–73, Jan. 2005.

[8] K. Hamano, “Correction of “test for the longest run of ones in a
block” included in NIST randomness test suite,” IEICE Technical
Report, ISEC2007-3, May 2007. (in Japanese)

[9] K. Hamano and T. Kaneko, “Correction of overlapping template
matching test included in NIST randomness test suite,” IEICE Trans.
Fundamentals, vol.E90-A, no.9, pp.1788–1792, Sept. 2007.

[10] K. Hamano and H. Yamamoto, “Construction of randomness testing
based on T-codes,” IEICE Technical Report, IT2007-55, Feb. 2008.
(in Japanese)

[11] K. Hamano and H. Yamamoto, “A new randomness test based on all
the autocorrelation values,” IEICE Technical Report, ISEC2008-4,
May 2008. (in Japanese)

[12] K. Hamano and H. Yamamoto, “A randomness test based on T-
codes,” Proc. ISITA2008, pp.1095–1100, Dec. 2008.

[13] K. Hamano, F. Sato, and H. Yamamoto, “A new randomness test
based on linear complexity profile,” IEICE Trans. Fundamentals,
vol.E92-A, no.1, pp.166–172, Jan. 2009.

[14] K. Hamano and H. Yamamoto, “A differential equation method to
derive the formulas of the T-complexity and the LZ-complexity,”
Proc. IEEE ISIT2009, pp.625–629, June 2009.

HAMANO and YAMAMOTO: A RANDOMNESS TEST BASED ON T-COMPLEXITY
1353

[15] K. Hamano and H. Yamamoto, “A new data compression algo-
rithm based on a dictionary method using recursive construction
of T-codes,” IEICE Technical Report, IT2009-20, July 2009. (in
Japanese)

[16] K. Hamano and H. Yamamoto, “Data compression based on a
dictionary method using recursive construction of T-codes,” Proc.
DCC2010, p.531, March 2010.

[17] M. Kaneda, H. Okutomi, and K. Nakamura, “A study on Maurer’s
“universal statistical” test included in NIST randomness test suite,”
Proc. SCIS2007, 3E1-3, Jan. 2007. (in Japanese)

[18] M. Kaneda, H. Okutomi, and K. Nakamura, “A study on discrete
Fourier transform test included in NIST randomness test suite,”
IEICE Technical Report, ISEC2006-124, March 2007. (in Japanese)

[19] T. Kaneko, “Investigation report on test methods of pseudo ran-
dom number generator system — Lempel-Ziv compression test —,”
CRYPTREC Technical Report, no.0206. (in Japanese)

[20] T. Kaneko, “Investigation report on test methods of the the pseudo
random number generating system,” CRYPTREC Technical Report,
no.0211. (in Japanese)

[21] S. Kim, K. Umeno, and A. Hasegawa, “On the NIST statistical test
suite for randomness,” IEICE Technical Report, ISEC2003-87, Dec.
2003. (in Japanese)

[22] D.E. Knuth, The Art of Computer Programming, vol.3, Sorting and
Searching, 2nd ed., pp.492–512, Addison-Wesley, 1997.

[23] G. Marsaglia, DIEHARD: A battery of tests of randomness, The
Marsaglia Random Number CDROM including the Diehard Battery
of Tests of Randomness, Florida State University, Florida, 1995.

[24] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom number gen-
erator,” ACM Trans. Model. Comput. Simul., vol.8, no.1, pp.3–30,
Jan. 1998.

[25] National Institute of Standards and Technology, “A statistical test
suite for random and pseudorandom number generators for crypto-
graphic applications,” NIST Special Publication 800-22, 2001.

[26] National Institute of Standards and Technology, “A statistical test
suite for random and pseudorandom number generators for crypto-
graphic applications,” NIST Special Publication 800-22 Revision 1,
2008.

[27] H. Okutomi, M. Kaneda, K. Yamaguchi, and K. Nakamura, “A study
on the randomness evaluation method using NIST randomness test,”
Proc. SCIS2006, 1E2-3, Jan. 2006. (in Japanese)

[28] H. Okutomi, M. Kaneda, and K. Nakamura, “A study on the NIST
randomness test — Especially evaluating “the test for the longest
run of ones in a block,”” Proc. SCIS2008, 4A1-6, Jan. 2008. (in
Japanese)

[29] Text Compression Corpus, University of Calgary, available at
ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus

[30] M.R. Titchener, “Technical note: Digital encoding by way of new T-
codes,” IEE Proc. Pt.E (Computers and Digital Techniques), vol.131,
no.4, pp.151–153, July 1984.

[31] J. Yang and U. Speidel, “A T-decomposition algorithm with
O(n log n) time and space complexity,” Proc. IEEE ISIT2005, pp.23–
27, 2005.

[32] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” IEEE Trans. Inf. Theory, vol.IT-24, no.5,
pp.530–536, Sept. 1978.

Appendix: Forward T-Decomposition Algorithm for
Generalized T-Codes

In Sect. 3, we proposed Algorithm-B to realize forward T-
decomposition for simple T-codes. In this appendix, we
give a forward T-decomposition algorithm for generalized
T-codes by extending Algorithm-B.

Fig. A· 1 Trie growth for a sequence s = 110001111011111111111111
1.

We now consider a problem to parse a sequence s se-
quentially to pk1

1 pk2

2 pk3

3 · · · , where each pi satisfies Eq. (3)
and ki is a positive integer. As an example, let us consider a
case that s = s25

1 = 1100011110111111111111111 is parsed
as pk1

1 pk2
2 pk3

3 pk4
4 pk5

5 pk6

6 , where

k1 = 2, k2 = 3, k3 = 1, k4 = 1, k5 = 2, k6 = 1,

and each pi is given as follows.

p1 = 1
p2 = 0
p3 = p2

11 (= 111)
p4 = p10 (= 10)
p5 = p3 p2

11 (= 111111)
p6 = p2

11 (= 111)

Note that each pi satisfies Eq. (3) and it can be obtained by
using the same tries as Algorithm-B. But, in this case, the
node with index i must store the value of ki.

Assume that s10
1 = 1100011110 is parsed as

pk1

1 pk2

2 pk3

3 pk4

4 and tries t j, 0 ≤ j ≤ 4, are already constructed
from {p1, p2, p3, p4} and {k1, k2, k3, k4} as shown in Fig. A· 1.
Then p5 is obtained from the tries as follows. First, we trace
trie t4 from the root to a leaf node following the remaining
sequence of s, s25

11 = 111111 · · · . Since we reach leaf node
3 in t4, we can know that the first part of p5 consists of p3,
i.e., p5 = p3 · · · . Since p3 is parsed and k3 = 1, the second
pj must satisfy j ≤ 2. Hence we next use trie t2. Again, we
trace t2 from the root to a leaf node following the remain-
ing sequence of s, s25

14 = 111 · · · . Then, since we reach leaf
node 1 in t2, we can know that the second part of p5 is p1,
i.e., p5 = p3 p1 · · · . Since node 1 has k1 = 2, p1 can become
the third pj. Hence we next use trie t1 rather than trie t0.
Again, we trace t1 from the root to a leaf node following the
remaining sequence of s, s25

15 = 11 · · · . Then, since we reach
leaf node 1 in t1, we can know that the third part of p5 is

1354
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.7 JULY 2010

p1, i.e., p5 = p3 p2
1 · · · . Since p1 is now included k1 times

in p5, p1 cannot be used anymore. Hence we next use trie
t0. In trie t0, we cannot move from the root. In this case, the
next symbol “1” becomes the literal symbol of p5, and p5 is
given as p3 p2

11.
Trie t5 can be created by adding p5 into trie t4 as shown

in Fig. A· 1. At this point, we set k5 = 1, which is stored
at node with index 5. Next, we trace trie t5 from the root
to a leaf node following the remaining sequence of s, s25

17 =

111111 · · · . Then, since we reach the just created leaf node
5 in t5, we can know that p5 occurs twice successively in s.
In this case, we increment k5 by 1 as shown in Fig. A· 1.

Similarly, p6 is obtained as follows. Following the re-
maining sequence of s, s25

23 = 111, we trace trie t5 from the
root toward a leaf node, and we reach node 3 in t5. When
p6 = p3, p6 does not end with a literal symbol. In this
case, we move back to the nearest node with a positive in-
dex, which is 1 in this example, and hence we obtain that
p6 = p1 · · · . Next we again use trie t1 since k1 = 2. After
similar iterations, p6 is given as p2

11.
In the same way as Algorithm-B, ti can simulate any t j

for 0 ≤ j < i, and hence it is sufficient that only the latest
trie is memorized.

The above algorithm can be described formally as fol-
lows.

Algorithm-D

D1 (Initialization)
Let s be a given sequence.
i :=1.
Create t0.

D2 pi :=λ. ν := i − 1.
D3 Following s, trace a path from the root toward a leaf

node in trie tν† as far as possible. Let v represent the
farthest node that we can reach.

• If v is a node with a positive index, then go to D4.
• If v is a node with index 0, then go to D5.
• If v is the root, i.e., we cannot move from the root,

then go to D6.

D4 Let j be the index of node v.
If j = i − 1, then go to D7.
If pi ends with p

kj

j or s is exhausted, then go to D5.
pi := pi p j.
Remove pj from the head of s.
If k j = 1, ν := j − 1. Otherwise, ν := j.
Go back to D3.

D5 If there exists no node with a positive index between v
and the root, then go to D6. Otherwise, move back from
node v toward the root in trie tν. Let v̂ be the first node
with a positive index that we find in the moving back.
Newly let v represent the node v̂, and go back to D4.

D6 pi := piω, where ω is the first symbol of s.
Output pi.
If i > 1, output ki−1.

†Trie tν is simulated by considering only the nodes with index
l satisfying l ≤ ν in trie ti−1.

Remove ω from the head of s.
ki :=1.
If s = λ, output ki, exit.
Update trie ti−1 to ti by adding pi into ti−1.
i := i + 1.
Go back to D2.

D7 ki−1 :=ki−1 + 1.
Remove pi−1 from the head of s.
If s = λ, output ki−1, exit.
Go back to D3.

Using the above Algorithm-D, the mean and standard
deviation of T-complexity become 38718.6 and 58.6585, re-
spectively for 4800 Marsaglia’s random sequences of length
106. These values are almost the same as the case of
Algorithm-B. This comes from the fact that in the case of
random numbers, the same long sequence seldom occurs se-
quentially even if it occurs several times. If pseudo-random
numbers have a defect such that some long subsequences
tend to occur sequentially, the defect can also be detected
by Algorithm-B. Hence, for the purpose of randomness test,
we used Algorithm-B based on T-complexity for simple T-
codes rather than Algorithm-D based on T-complexity for
generalized T-codes.

Kenji Hamano received the B.E. and M.E.
degrees in Mathematical Engineering and Infor-
mation Physics from the University of Tokyo in
1999 and 2001, respectively. In 2001, he joined
the Technical Research & Development Insti-
tute, Ministry of Defense. In 2010, he received
the Ph.D. degree from the University of Tokyo.
His research interests are randomness, statistics
and cryptography.

Hirosuke Yamamoto was born in Waka-
yama, Japan, on November 15, 1952, He re-
ceived the B.E. degree from Shizuoka Univer-
sity, in 1975 and the M.E. and Ph.D. degrees
from the University of Tokyo, in 1977 and 1980,
respectively, all in electrical engineering. In
1980, he joined Tokushima University. He was
an Associate Professor at Tokushima University,
the University of Electro-Communications, and
the University of Tokyo, from 1983 to 1987,
from 1987 to 1993, and from 1993 to 1999, re-

spectively. Since 1999, he has been a Professor at the University of To-
kyo. He was with the School of Engineering and the School of Informa-
tion Science and Technology from 1993 to 1999 and from 1999 to 2004,
respectively, and is currently with the School of Frontier Sciences in the
University of Tokyo. In 1989 and 1990, he was a Visiting Scholar at the
Information Systems Laboratory, Stanford University. His research inter-
ests are in Shannon theory, data compression algorithms, and cryptology.
Dr. Yamamoto is a member of the IEEE and the SITA (Society of Infor-
mation Theory and its Applications). He served as the Chair of the IEEE
Information Theory Society Japan Chapter in 2002 and 2003, and the TPC
(Technical Program Committee) Co-Chair of ISITA2004 (the 2004 Inter-
national Symposium on Information Theory and its Applications) and the
TPC chair of ISITA2008. He was also the president of the SITA in 2008 and
2009, and an Associate Editor for Shannon Theory, IEEE Transactions on
Information Theory from 2007 to 2010. He is currently the Editor-in-Chief
for the IEICE Transactions on Fundamentals.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages false
 /ColorImageFilter /None
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /None
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

