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Multiple Object Identification Coding
Hirosuke Yamamoto, Fellow, IEEE, and Masashi Ueda

Abstract—In the case of ordinary identification coding, a code
is devised to identify a single object among N objects. But, in
this paper, we consider a coding problem to identify K objects
at once among N objects in the both cases that K objects are
ranked or not ranked. By combining Moulin-Koetter scheme
with the ε-almost strongly universal class of hash functions used
in Kurosawa-Yoshida scheme, an efficient and explicit coding
scheme is proposed for K-multiple object identification (K-
MOID) coding. Furthermore, it is shown that the K-MOID
capacity CK-MOID, which is the maximum achievable coding rate
in the K-MOID coding, is equal to the ordinary channel capacity,
and the proposed scheme can attain CK-MOID.

Index Terms—Identification coding, channel coding, multiple
objects, passive feedback, common randomness.

I. INTRODUCTION

CONSIDER a case such that we must inform many
receivers about a winner, who is selected among them,

via a stationary discrete memoryless channel. If each receiver
is interested only in whether he/she is the winner or not, but
is not interested in who wins when he/she is not the winner,
an identification code (ID code) can be used to transmit the
information efficiently. It is known for discrete memoryless
channels (DMCs) that the decoding error probability of each
receiver can become arbitrarily small if R < C, where C is
the ordinary channel capacity of transmission coding and R
is the ID coding rate defined by R = (log logN)/n for the
number of receivers N and the code length n [1]-[3]. In other
words, the ID capacity CID, the maximum achievable R in ID
coding, is equal to the channel capacity C.

Although the ID codes shown in [1]-[3] are not practical,
explicit constructions of ID codes are studied in [4]-[6]. Verdú
and Wei [4] showed that an ID code for a noisy channel can
be constructed by concatenating an ID code for the noiseless
channel and a transmission code (an ordinary error correcting
code) for the noisy channel. They also gave an explicit ID code
for the noiseless channel by using a constant weight binary
matrix based on Reed-Solomon codes. Furthermore, Kurosawa
and Yoshida [5] showed that a more efficient ID code for the
noiseless channel can be constructed by generating the binary
matrix based on ε-almost strongly universal (ε-ASU) classes of
hash functions, and Moulin and Koetter [6] proposed another
construction scheme of ID codes based on Reed-Solomon
codes, which is efficient if common randomness can be used
among the sender and receivers.
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In this paper, we consider the case that there are K winners
among N receivers. In this case, we can send the information
of winners by using an ordinary ID code K times. But, the
coding rate is decreased to R/K. If we construct an ordinary
ID code for Ñ =

(
N
K

)
and assign

(
N−1
K−1

)
indices to each

receiver, we can send the information with the same coding
rate R as the case of K = 1. However, the type II decoding
error probability becomes very large because each receiver
must decode the received word for all

(
N−1
K−1

)
indices. This

means that the type II decoding error probability becomes(
N−1
K−1

)
times as large as the case of K = 1.

We note that Ahlswede [7][8] studied K-Identification. Let
N and Ki be the set and a subset of all receivers, respectively,
where |N | = N and |Ki| = K, and | · | represents the
cardinality of a set. Then, it is assumed in the K-identification
problem that each receiver i knows the set Ki, a codeword is
encoded from only one î ∈ N , and each receiver i wants to
know whether î ∈ Ki or î 6∈ Ki. In [9], the K-Identification
is further generalized to Generalized Identification, in which
each receiver i not only finds out whether î ∈ Ki or î 6∈ Ki,
but also identifies î if î ∈ Ki. But, it is still assumed in the
Generalized Identification that each receiver i knows Ki and
a codeword is encoded from only one î ∈ N . In contrast,
we assume in our coding problem that any receiver does not
know K(⊂ N ), which is the set of winners selected at the
sender side, a codeword is encoded from K, and each receiver
i wants to know whether i ∈ K or i 6∈ K. So, since our
coding problem is quite different from K-Identification and
Generalized Identification, we cannot use their coding schemes
for our coding problem.

We call our identification coding problem Multiple Object
Identification (MOID) to distinguish from K-Identification and
Generalized Identification, and the aim of this paper is to
realize an explicit construction of efficient MOID codes.

In this paper, we show that an efficient and explicit MOID
code can be constructed by combining Moulin-Koetter scheme
[6] with the ε-ASU class of hash functions used in Kurosawa-
Yoshida scheme [5]. For the proposed scheme, we derive the
achievable region of coding rate and exponents of type I and
type II decoding error probabilities for DMCs. As a result
we show that the K-MOID capacity CK-MOID, which is the
maximum achievable coding rate in K-MOID coding, is equal
to the channel capacity C, hence CK-MOID does not depend
on K, and the proposed scheme can attain CK-MOID for any
fixed K.

In Sections 2 and 3, we treat the cases that K winners are
not ranked and are ranked, respectively.

For simplicity we first assume that K is fixed. But the case
of variable K is considered in Section II-G. Furthermore, in
Sections II-E and II-F, we treat the cases that the noiseless
feedback channel and common randomness can be used be-
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tween the sender and receivers. An ordinary error correcting
code is called a transmission code to distinguish from an
ID code in this paper, and the combined MOID coding with
transmission coding is treated in Section II-D.

II. MOID CODE WITHOUT RANKING

A. Definition of MOID codes

Let N ≡ {1, 2, · · · , N} be the set of objects and let K
be a subset of N , which is selected at the sender side. For
simplicity, objects are called receivers in the following.

The sender sends binary information ui ∈ U ≡ {T,F} to
each receiver i such that ui = T if i ∈ K and ui = F if i 6∈ K.
In other words, K can be represented as follows:

K ≡ {i : ui = T, i ∈ N}. (1)

For simplicity, we assume that K ≡ |K| ≥ 1 is fixed. Let
Z ≡ {K} be the set of all possible K. Then we note that |Z|
is given by

(
N
K

)
, and the ordinary ID coding corresponds to

the case of K = 1.
The channel is a DMC W with input alphabet X and output

alphabet Y . For simplicity, we assume that the channel input
is binary, i.e. |X | = 2. But, the results can easily be extended
to the case of |X | ≥ 2. We also assume that the encoder ϕ
of an MOID code can use a random number v which takes a
value of V = {1, 2, · · · , |V|}. Then, the encoder ϕ to identify
K receivers can be defined as follows:

ϕ : Z × V → Xn, (2)

where n is the code length, and a codeword xn is generated
by xn = ϕ(K, v) from MOID information K ∈ Z and random
number v ∈ V . This means that the encoder ϕ is a stochastic
encoder for a given K. The decoder ψi of receiver i, which
outputs T or F, is defined as follows:

ψi : Yn → U . (3)

An MOID code (ϕ,ψ1, ψ2, · · · , ψN ) is called a K-MOID
code if K = |K|.

The coding rate R(n)
K of a K-MOID code is defined by1

R
(n)
K ≡ 1

n
log logN. (4)

Next we consider the decoding error probabilities of a
K-MOID code. Type I decoding error probability and its
exponent are defined as follows:

λ
(n)
1 (i|K) ≡ Pr{ψi(ϕ(K, V )) = F} for i ∈ K, (5)

λ
(n)
1 ≡ max

K∈Z
max
i∈K

λ
(n)
1 (i|K), (6)

E
(n)
1 ≡ − 1

n
log λ(n)

1 , (7)

where λ(n)
1 (i|K) represents the decoding error probability of

receiver i ∈ K, λ(n)
1 is the worst of λ(n)

1 (i|K), and E(n)
1 is the

exponent of λ(n)
1 .

1The base of logarithm is always 2 in this paper.

Similarly, type II decoding error probability is defined by

λ
(n)
2 (i|K) ≡ Pr{ψi(ϕ(K, V )) = T} for i 6∈ K, (8)

λ
(n)
2 ≡ max

K∈Z
max
i6∈K

λ
(n)
2 (i|K), (9)

E
(n)
2 ≡ − 1

n
log λ(n)

2 , (10)

where λ(n)
2 (i|K) is the decoding error probability of receiver

i 6∈ K, λ(n)
2 is the worst of λ(n)

2 (i|K), and E(n)
2 is the exponent

of λ(n)
2 .

A triplet (R,E1, E2) is said to be achievable by a coding
scheme if the coding scheme can satisfy the following inequal-
ities:

lim inf
n→∞

R
(n)
M ≥ R, (11)

lim inf
n→∞

E
(n)
1 ≥ E1, (12)

lim inf
n→∞

E
(n)
2 ≥ E2. (13)

The K-MOID capacity CK-MOID is defined as the maximum
achievable R in K-MOID coding, i.e.,

CK-MOID ≡ max{R | (R,E1, E2) is achievable}. (14)

Remark 1: When K = 1, the K-MOID code coincides with
the ordinary ID code. Hence, coding rate R(n)

K , error exponents
E

(n)
1 and E

(n)
2 , and CK-MOID also coincide with the ones of

the ordinary ID code and CID, respectively.

For K = 1, the following triplet is achievable by the first
Verdú-Wei coding scheme [4, Proposition 4] and Kurosawa-
Yoshida coding scheme [5]:

(R,E1, E2) =
((

1 − 3
`

)
r,E(r),min

{r
`
, E(r)

})
,

0 < r < C, ` = 3, 4, 5, · · · , (15)

where E(r) is the reliability function (or the error exponent)
of DMC W in transmission coding with coding rate r,
C is the ordinary channel capacity of W given by C =
maxPX

I(X;Y ), and r and ` are parameters that we can select
freely. Furthermore, the following triplet is also achievable by
the second Verdú-Wei coding scheme [4, Proposition 5] and
Moulin-Koetter coding scheme [6]:

(R,E1, E2) =
(
ρr,E(r),min

{(
1
2
− ρ

)
r,E(r)

})
,

0 < r < C, 0 ≤ ρ ≤ 1
2
, (16)

where r and ρ are parameters.
It is known for K = 1 that (R,E1, E2) must satisfy the

following theorem.
Theorem 1 ([1, Theorem 2] [4, Theorem 4]): If (R,E1, E2)

is achievable and E1 > 0 for a DMC W , then

R+ 2E2 ≤ C. (17)

This bound is tight if either (a) the channel W is noiseless or
(b) E1 → 0+, and hence CID = C.

Note from (15) and (16) that the former and latter coding
schemes must satisfy R + 3E2 ≤ C and R + E2 ≤ C/2,
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respectively, for any DMC, and can attain R + 3E2 = C
and R + E2 = C/2, respectively, for the noiseless channel,
which has E(r) = ∞ and r = C. Furthermore, for any DMC,
the former coding schemes can attain the ID capacity CID by
setting r sufficiently close to C and l sufficiently large. On
the other hand, R cannot become larger than C/2 in the latter
coding schemes. But, the latter coding schemes have larger
E2 than the former coding schemes in low R because they
satisfy max

`
E2 = r/3 and max

ρ
E2 = r/2, respectively.

It is worth noting that (17) also holds for K ≥ 2.

B. K-repeated coding of known ID codes

An MOID code for a noisy channel can be constructed by
concatenating an MOID code for the noiseless channel and
a transmission code for the noisy channel in the same way
as the ordinary ID coding [4]. So, we first review the known
coding schemes for the noiseless channel in the case of the
ordinary ID coding, i.e, K = 1.

In Verdú-Wei coding schemes [4] and Kurosawa-Yoshida
coding scheme [5], an N × |V| binary matrix (bi,v) is used
for ID coding, where i ∈ N and v ∈ V , and each i-th vector
(bi,1, bi,2, · · · , bi,|V|) of the matrix is distributed to receiver
i in advance. Random number v is selected uniformly over
Vi ≡ {v|bi,v = 1} when ID information is i, and the index of
v in V is used as the codeword. Each decoder ψî outputs T or F
if bî,v = 1 or bî,v = 0, respectively. The binary matrix (bi,v) is
determined based on a concatenated code of Reesd-Solomon
codes in Verdú-Wei schemes or based on ε-ASU classes of
hash functions in Kurosawa-Yoshida scheme. Refer [4] and
[5] for more details.

The above coding schemes can be extended to the K-
MOID coding by replacing a single v with a K dimen-
sional vector (v1, v2, · · · , vK), where vj ∈ Vij ⊂ V for
K = {i1, i2, · · · , iK}. But, since the code length becomes
K times long and hence the coding rate decreases to 1/K for
the noiseless channel, these K-repeated coding schemes have
the following triplet from (15) and (16): 2

(R,E1, E2) =
((

1 − 3
`

)
r

K
,E(r),min

{ r

K`
,E(r)

})
,

0 < r < C, ` = 3, 4, 5, · · · , (18)

or

(R,E1, E2) =
(
ρr

K
,E(r),min

{(
1
2
− ρ

)
r

K
,E(r)

})
,

0 < r < C, 0 ≤ ρ ≤ 1
2
. (19)

As a result, the K-repeated coding schemes attain R+3E2 =
C/K or R + E2 = C/(2K) for the noiseless channel, and
must satisfy R+ 3E2 ≤ C/K or R+E2 ≤ C/(2K) for any
DMC. Hence, R cannot become larger than C/K or C/(2K),
which tends to zero as K becomes large.

In Moulin-Koetter coding scheme [6], the codeword of
ID information i consists of (v, cv(i)) where cv(i) is the

2E(r) is not divided by K because E(r) comes from the transmission
coding and is not related to the ID coding for the noiseless channel. Refer
the proof of Theorem 2.

v-th symbol of the i-th codeword of Reed-Solomon code
over GF(2m). Random number v is selected uniformly over
V = {1, 2, · · · , |V|}, where |V| is the code length of the
Reed-Solomon code. Each decoder ψî outputs T or F if
cv (̂i) = c or cv (̂i) 6= c, respectively, for a received code-
word (v, c). This coding scheme can be extended to the
K-MOID coding by replacing the codeword (v, cv(i)) with
(v, cv(i1), cv(i2), · · · , cv(iK)). But, since the code length of
Reed-Solomon code is given by |V| = 2m, v and cv(i) must
satisfy ‖v‖ = ‖cv(i)‖ in their scheme, where ‖a‖ represents
the bit length of a. This means that the length of the extended
Moulin-Koetter coding scheme becomes (K + 1)/2 times
longer and the coding rate decreases to 2/(K + 1). Therefore
the triplet is given by

(R,E1, E2) =
(

2ρ
K + 1

r, E(r),min
{

1 − 2ρ
K + 1

r, E(r)
})

,

0 < r < C, 0 ≤ ρ ≤ 1
2
. (20)

As a result, the extended Moulin-Koetter coding scheme
attains R + E2 = C/(K + 1) for the noiseless channel, and
must satisfy R + E2 ≤ C/(K + 1) for any DMC. Hence, R
cannot become larger than C/(K+1), which tends to zero as
K becomes large.

C. Construction of efficient MOID codes

In order to construct an efficient MOID code, we use a
codeword (v, hv(i)) instead of (v, cv(i)), where hv(i) is an
ε-ASU class of hash functions satisfying ‖v‖ � ‖hv(i)‖.
In this case, even if we extend the codeword (v, hv(i)) to
(v, hv(i1), hv(i2), · · · , hv(iK)) for the K-MOID coding, the
coding rate does not decrease significantly.

Now we describe our coding scheme for the MOID coding.
We use the ε-ASU class of hash functions H = {hl} used in
Kurosawa-Yoshida scheme [5], which satisfies the following
relations for hl : A → B.

|{hl ∈ H : hl(α) = β}| =
|H|
|B|

,

for ∀α ∈ A,∀β ∈ B, (21)

|{hl ∈ H : hl(α1) = β1, hl(α2) = β2}| ≤ ε
|H|
|B|

,

for ∀α1, α2 ∈ A, α1 6= α2,∀β1, β2 ∈ B . (22)

Then the following lemma holds.
Lemma 1 ([5, Corollary 3.1]): If there exists an error-

correcting code over GF(qk) such that the code length is n0,
the minimum Hamming distance is d, and the number of
codewords is M , then we can construct an ε-ASU class of
hash functions H that satisfies

|A| = M, (23)
|B| = q, (24)

|H| = n0q
2, (25)

ε =
k

q
+ 1 − d

n0
. (26)
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In order to construct a K-MOID code, we set A and H as
A = N (|A| = N ) and |H| = |V|, respectively. Let f and
g be the encoder and decoder, respectively, of a transmission
code for noisy channel W such that f : V × βK → Xn

and g : Yn → V × βK . Then, we construct K-MOID code
(ϕ,ψ1, ψ2, · · · , ψN ) as follows:

Coding Scheme 1:

Encoder ϕ :
For K = {i1, i2, · · · , iK} ⊂ N ,

ϕ(K, v) ≡ f(v, hv(i1), hv(i2), · · · , hv(iK)). (27)
Decoder ψi:

ψi(yn) ≡

 T, if hv̂(i) = βj holds
for some j, 1 ≤ j ≤ K

F, otherwise
for (v̂, β1, β2, · · · , βK) = g(yn), (28)

where v is a random number distributed uniformly over V .

This K-MOID code satisfies the following theorem.

Theorem 2: The following triplet is achievable by Coding
Scheme 1:

(R,E1, E2)

=
((

1 − K + 3
K + `

)
r, E(r),min

{
r

K + `
, E(r)

})
,

0 < r < C, ` = 3, 4, 5, · · · . (29)

Proof: First we construct a K-MOID code with code
length n0 for the binary noiseless channel by using the ε-ASU
class of hash functions given in Lemma 1. If we use (qk, qt)-
Reed-Solomon code with q = 2m as an error-correcting code
in Lemma 1, which has n0 = qk, d = qk − qt + 1, and
M = (qk)qt

, we obtain the ε-ASU class of hash functions
that satisfies

|A| = N = qkqt

, (30)
|B| = q (B = GF(q)), (31)

|V| = |H| = qk+2, (32)

ε =
k

q
+
qt − 1
qk

≤ 1
q

(
k +

qt

qk−1

)
, (33)

where t ≤ k − 1 because it must hold that ε→ 0 as m→ ∞
(i.e., q → ∞).

Then, from (31), (32), and q = 2m, the code length n0 =
‖(v, hv(i1), hv(i2), · · · , hv(iK))‖ is given by

n0 = log |V| +K log |B| = (k + 2 +K)m. (34)

Hence, from (30) and (34), the coding rate of this code satisfies

R
(n0)
K =

1
n0

log logN

=
1
n0

log
{
kqt log q

}
=

1
n0

{tm+ log k + logm}

=
t

k + 2 +K
+

1
n0

(log k + logm)

=
t

k + 2 +K
+O

(
log n0

n0

)
. (35)

Since the optimal t that maximizes (35) for 1 ≤ t ≤ k − 1 is
t = k − 1, we can attain the following coding rate:

R
(n0)
K =

k − 1
k + 2 +K

+O

(
log n0

n0

)
= 1 − K + 3

k + 2 +K
+O

(
logn0

n0

)
. (36)

Next we evaluate the decoding error probabilities. In the
case of the noiseless channel, every ψi always outputs T if
i ∈ K. Hence for any K ∈ Z and any i ∈ K, λ(n0)

1 (i|K) = 0.
This means that λ(n0)

1 = 0 and E(n0)
1 = ∞.

For K = {i1, i2, · · · , iK} and i 6∈ K, λ(n0)
2 (i|K) is bounded

as follows:

λ
(n0)
2 (i|K) = Pr


K∪

j=1

(hV (i) = hV (ij))


≤

K∑
j=1

Pr {hV (i) = hV (ij)}

= K

∑
β∈B |{hv : hv(i) = hv(ij) = β}|

|V|
≤ εK, (37)

where the first and second inequalities hold from the union
bound and (22), respectively. Since this bound does not depend
on K and i 6∈ K, λ(n)

2 has the same bound:

λ
(n0)
2 ≤ εK. (38)

Next we evaluate E(n)
2 , the exponent of λ(n)

2 . From (10), (33),
(34), and (38), E(n0)

2 has the following bound for t ≤ k − 1:

E
(n0)
2 ≥ − 1

n0
{logK + log ε}

≥ − 1
n0

{
logK − log q + log

(
k +

qt

qk−1

)}
=

1
k + 2 +K

− 1
n0

{
logK + log

(
k +

qt

qk−1

)}
=

1
k + 2 +K

−O

(
log k
n0

)
. (39)

Setting ` = k+2, ` = 3, 4, · · · , and m→ ∞, i.e. n0 → ∞,
in (36) and (39), we note that the following triplet is achievable
for the binary noiseless channel:

(R,E1, E2) =
(

1 − K + 3
K + `

, α,
1

K + `

)
, (40)
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where α > 0 is an arbitrarily large constant.
Next we treat the case of a DMC W . If we transmit

(v, hv(i1), hv(i2), · · · , hv(iK)) via W by using the best trans-
mission code (f, g) of W with coding rate r, 0 < r < C, then
the code length n is given by n = n0/r and the decoding
error probability of the transmission code is upper bounded
by 2−nE(r), where E(r) and C are the reliability function
and the channel capacity of W , respectively. Hence, the total
error probability λ(n)

j , j = 1, 2, is bounded as follows:

λ
(n)
j ≤ 2−n0E

(n0)
j + 2−nE(r) ≤ 2 · 2−n min{rE

(n0)
j ,E(r)}.

(41)

From (40) and (41), the triplet given by (29) is achievable.
Q.E.D.

From (29), Coding Scheme 1 must satisfy R+(K+3)E2 ≤
C for any DMC, and attain R + (K + 3)E2 = C for
the noiseless channel. Furthermore, for any DMC, R can
be enlarged to C by setting r sufficiently close to C and `
sufficiently large. Hence, by combining this result with (17),
we obtain the following corollary.

Corollary 1: The K-MOID capacity CK-MOID is given by

CK-MOID = C. (42)

Coding Scheme 1 can attain CK-MOID, and this is a big
advantage over the other schemes treated in Section II-B,
which cannot attain CK-MOID. We note from (42) that the K-
MOID capacity CK-MOID does not depend on K.

Remark 2: Corollary 1 can also be proved by modifying
the coding scheme used in [2, Section III]. But, such proof
can show only the existence of a MOID code that achieves
CK-MOID. On the other hand, we showed in this paper that
CK-MOID can be achieved by an explicit MOID coding scheme.

Remark 3: In (29), we have R = 0 when ` = 3. In this case,
R

(n)
K ≡ (log logN)/n tends to zero as n → 0. But, R̂(n)

K ≡
(logN)/n does not tend to zero because it holds from (30),
(34), q = 2m, and r = n0/n that for t = k − 1 = `− 3 = 0,

R̂
(n)
K =

logN
n

=
kqt log q

n

=
m

(3 +K)m/r

=
r

3 +K
. (43)

Hence, ` = 3 can be used in the case such that we require
relatively large E2 but we do not need huge N .

Remark 4: From Theorem 2, Coding Scheme 1 achieves for
K = 1 that

(R,E1, E2)

=
((

1 − 4
1 + `

)
r, E(r),min

{
r

1 + `
, E(r)

})
,

0 < r < C, ` = 3, 4, 5, · · · . (44)

This triplet is a little worse than (15), which is the triplet of
the first Verdú-Wei coding scheme and the Kurosawa-Yoshida
coding scheme. But, for K ≥ 2, Coding Scheme 1 can attain
the K-MOID capacity although the other schemes cannot
attain it. Furthermore, Coding Scheme 1 also has advantages
for K ≥ 1 if the encoder and decoders can use common
randomness or a noiseless feedback channel as shown in
Sections II-E and II-F.

D. K-MOID Coding with a Transmission Message

It is shown in [3] that an ID code can send a transmission
message in addition to an ID message at once. Actually ID
codes given in [4]–[6] can realize such coding. In the case
of Coding Scheme 1, we note from (28) that random number
v can be decoded by g(yn) at each decoder ψi. This means
that we can send information v to receivers with a K-MOID
message K. Hence, if we assign v to a transmission message,
which is distributed uniformly over V , instead of the random
number, then we can send receivers the transmission message
v with the K-MOID message.

In this case, the coding rate R
(n)
T of the transmission

message is given by

R
(n)
T ≡ 1

n
log |V|

=
n0

n

1
n0

log |V|

= r
`

`+K
, ` = 3, 4, · · · (45)

from (32), (34), and r = n0/n. Hence, by setting r sufficiently
close to C and ` sufficiently large, Coding Scheme 1 can attain
the channel capacity for transmission coding and the K-MOID
capacity for MOID coding at once.

E. K-MOID Coding with Common Randomness

If the encoder and decoders can use common randomness,
e.g. a good pseudo random number generator, we do not need
to send some or all bits of random number v in the same way
as Moulin-Koetter scheme [6, Section 8].

Assume that we can use n0c-bit common randomness, and
define the rate of the common randomness by R0c = n0c/n0

where, from (34), n0 = (` + K)m and 0 ≤ n0c ≤ `m for
k + 2 = ` = 3, 4, · · · . Hence, we have 0 ≤ R0c ≤ `/(`+K).
Since we do not need send n0c = R0cn0 bits, the code length
for the noiseless channel can be shortened to n0 − n0c =
n0(1 −R0c) bits. Hence, we have from (29) that

(R,E1, E2)

=
((

1 − K + 3
K + `

)
r

1 −R0c
, E(r),

min
{

1
K + `

r

1 −R0c
, E(r)

})
,

0 < r < C, ` = 3, 4, 5, · · · . (46)
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Now consider the case of maximum R0c, i.e. R0c = `/(`+
K). In this case, (R,E1, E2) is maximized and (46) becomes

(R,E1, E2) =
(
`− 3
K

r,E(r),min
{ r

K
,E(r)

})
,

0 < r < C, ` = 3, 4, 5, · · · . (47)

Hence, R can be enlarged arbitrarily by setting ` sufficiently
large. This property comes from the fact that ‖hv(i)‖/‖v‖ → 0
as `→ ∞.

Note that Verdú-Wei schemes, Kurosawa-Yoshida scheme,
and their K-repeated coding schemes treated in Section II-B
cannot use common randomness because random number v
must be selected over Vi, which depends on ID message
i. In the case of the extended Moulin-Koetter scheme, the
codeword (v, cv(i1), cv(i2), · · · , cv(iK)) can be shorten to
(cv(i1), cv(i2), · · · , cv(iK)) if common randomness can be
used. But, the improvement of coding rate is only K/(K+1)
because ‖v‖ = ‖cv(ij)‖ holds for all ij . Hence, Coding
Scheme 1 is much more efficient than the known coding
schemes when common randomness can be used for MOID
coding.

When R0c = `/(` +K), the following R can be achieved
by setting r → C in (47):

R =
`− 3
K

C

=
(

R0c

1 −R0c
− 3
K

)
C. (48)

On the other hand, it is known from [10, Theorem 2] that the
ID capacity for K = 1 with common randomness is equal to
the sum of C and the bits of common randomness per channel
symbol. In our case, this ID capacity is given by

CID = C +
nc0

(n0 − n0c)/C

=
(

1
1 −R0c

)
C. (49)

Note that CK-MOID ≤ CID. Hence, we can conclude by
comparing (48) with (49) that Coding scheme 1 almost attains
the K-MOID capacity when R0c is close to 1, i.e. ` is
sufficiently large.

F. K-MOID Coding with Noiseless Feedback

It is shown in [2] that if we can use a passive noiseless
feedback channel such that the encoder can know the channel
output Yt at each time t = 1, 2, · · · , n−1, then the ID capacity
is given by

C f,d
ID ≡ max

x∈X
H(W (·|x)) if the encoder is deterministic,

(50)

C f,s
ID ≡ max

P∈P(X )
H(P ·W ) if the encoder is stochastic.

(51)

Here W (·|·) is the transition probability of the forward channel
W , P(X ) is the set of input probability distributions, and
P ·W is the output probability distribution for input probability
distribution P ∈ P(X ).

Coding scheme 1 can attain C f,d
ID and C f,s

ID as follows. We first
send xñ, where xt, t = 1, 2, · · · , ñ, is the optimal fixed input x̃
that achieves the maximum of (50) in the deterministic case,
or is generated by the optimal input probability distribution
P̃ that achieves the maximum of (51) in the stochastic case.
Then the encoder and decoders can obtain random number
v from the corresponding channel output yñ by using the
interval algorithm for random number generation [11]. After
v is obtained at the encoder and decoders, the encoder sends
(hv(i1), hv(i2), · · · , hv(iM )) by a transmission code with
code length n∗ = Km/r.

In order to obtain v uniformly distributed over
{0, 1, 2, · · · , 2`m − 1} by the interval algorithm, we use
variable length ñ. Then the expected length E[ñ] is bounded
as follows [11, Theorem 3]:

`m

H
≤ E[ñ] ≤ 1

H

(
`m+ log 2(|Y| − 1) +

h(pmax)
1 − pmax

)
,

(52)

where pmax = max
y∈Y

PY (y), h(·) is the binary entropy function,

and H = H(W (·|x̃)) or H = H(P̃ · W ) if the encode is
deterministic or stochastic, respectively.

In this case, coding rate R′, which is defined by R′ =
(log logN)/(E[ñ] + n∗), satisfies that

R′ =
log logN
E[ñ] + n∗

=
(`− 3)m+ log(`− 2) + logm

E[ñ] +Km/r

→ H as m→ ∞ and `→ ∞, (53)

where the second equality holds from (30), t = k−1 = `−3,
and n∗ = Km/r. Hence, Coding Scheme 1 can attain C f,d

ID and
C f,s

ID for K-MOID coding if variable length coding is allowed.
In the above, we used the interval algorithm to realize an

explicit coding scheme. But, if we do not require an explicit
coding scheme, we can use the same coding technique shown
in [2] to obtain v with `m bits, which needs code length ñ =
`m/H+o(ñ). Refer [2] for more details. In this case, we have
that

R =
log logN
ñ+ n∗

=
(`− 3)m+ log(`− 2) + logm

`m/H + o(ñ) +Km/r

→ H as m→ ∞ and `→ ∞, (54)

Hence, the K-MOID capacity with feedback is given by
Cfd

K-MOID = Cfd
ID and Cfs

K-MOID = Cfs
ID.

G. MOID Coding with variable K

In the above subsections, we assumed for simplicity that K
is fixed and known. But, if K is variable and the decoders do
not know K, the encoder must send the information of K to
the decoders. For instance, this can be realized if we define the
encoder ϕ as ϕ(K, v) = f(K, v, hv(i1), hv(i2), · · · , hv(iK))
instead of (27).

If the maximum value of K, Kmax, is given, K can be
represented by dlogKmaxe bits. If Kmax is not known, K can
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be represented by Elias δ code [12], the length of which is
not larger than 1 + logK + 2 log(1 + logK) bits. Since these
additional bits can be ignored compared with n0 = (`+K)m
as m → ∞, Theorem 2 still holds even if K is variable.
However, we note from (35) that log logN ≈ (`−3)m. Hence,
K must satisfy that logK � n0 = (`+K)m = log logN −
(K − 3)m < log logN , which means

lim
m→∞

K

logN
= 0. (55)

Furthermore, from (29), R and E2 decrease to zero as K
becomes large for fixed r and `.

III. MOID CODE WITH RANKING

A. Definition of RMOID codes

In Section II, we assumed that selected K receivers are
not ranked. But, in this section, we consider the case that
K receivers are ranked. Let K ≡ (i1, i2, · · · , iK), where ij
stands for the receiver of rank j. Then, encoder ϕ̃ and decoder
ψ̃i for K ranked receivers can be defined as follows:

ϕ̃ : Z̃ × V → Xn (56)

ψ̃i : Yn → {1, 2, · · · ,K,F}, (57)

where Z̃ = {K}, which is the set of all possible K, and F
means “outside of the ranking”. We call this code K-RMOID
(ranked-multiple-object identification) code.

Although we can consider many types of errors for this K-
RMOID code (ϕ̃, ψ̃1, ψ̃2, · · · , ψ̃N ), we group the errors into
only two types. To simplify notation, we treat F as rank K+1.
Then, the type I (resp. II) error is defined as the error such
that a decoded rank of a receiver is larger (resp. smaller) than
the true rank of the receiver.

Let λ̃(n)
1 and λ̃(n)

2 be the worst probability of type I and II
errors, respectively. Then, they can be represented as follows:

λ̃
(n)
1 (ij |K) ≡ Pr{ψ̃ij (ϕ̃(K, V )) > j} (58)

λ̃
(n)
1 ≡ max

K∈Z̃
max

ij

λ̃
(n)
1 (ij |K), (59)

λ̃
(n)
2 (ij |K) ≡ Pr{ψ̃ij (ϕ̃(K, V )) < j}, (60)

λ̃
(n)
2 ≡ max

K∈Z̃
max

ij

λ̃
(n)
2 (ij |K). (61)

Furthermore, the error exponents of λ̃
(n)
1 and λ̃

(n)
2 are

defined by

Ẽ
(n)
1 ≡ − 1

n
log λ̃(n)

1 , (62)

Ẽ
(n)
2 ≡ − 1

n
log λ̃(n)

2 . (63)

Remark 5: From the definition of decoder ψ̃i given by (57),
we note that λ̃(n)

1 (iK+1|K) = λ̃
(n)
2 (i1|K) = 0. This means

that we can exclude receivers with rank j = K + 1 (i.e. F)
and the receiver with rank j = 1 in the maximization max

ij

of (59) and (61), respectively. Hence, we can easily check
that the type I and II errors defined in this section coincide
with the ordinary ones in the case of K = 1. Furthermore, if
all ranks j, 1 ≤ j ≤ K, are treated as the same rank, (60)

and (61) coincide with (6) and (9), respectively. Therefore,
the definition of type I and II errors given by (58)-(61) are
reasonable.

A triplet (R, Ẽ1, Ẽ2) is said to be achievable by a coding
scheme if the following inequalities can be satisfied by the
coding scheme:

lim inf
n→∞

R
(n)
M ≥ R, (64)

lim inf
n→∞

Ẽ
(n)
1 ≥ Ẽ1, (65)

lim inf
n→∞

Ẽ
(n)
2 ≥ Ẽ2. (66)

The K-RMOID capacity CK-RMOID is defined as the maxi-
mum achievable R in K-RMOID coding, i.e.,

CK-RMOID ≡ max{R | (R,E1, E2) is achievable
in K-MOID coding}. (67)

Obviously, it holds that CK-RMOID ≤ CK-MOID.

B. Construction of efficient RMOID codes
For K = (i1, i2, · · · , iK), we define a code (ϕ̃, ψ̃1, ψ̃2, · · · ,

ψ̃N ) as follows:

Coding Scheme 2:

ϕ̃(K, v) ≡f(v, hv(i1), hv(i2), · · · , hv(iK)) (68)

ψ̃i(yn) ≡

 j, if hv̂(i) 6= βl, l = 1, 2, · · · , j − 1
and hv̂(i) = βj

F, if hv̂(i) 6= βl, l = 1, 2, · · · ,K
for (v̂, β1, β2, · · · , βM ) = g(yn) (69)

The encoder ϕ̃ is the same as the encoder ϕ of Coding Scheme
1 defined in (27). But the order of hv(ij) in f of ϕ̃ represents
the rank of receivers while the order of hv(ij) has no meaning
in the case of ϕ defined in (27).

As shown in (69), each decoder ψ̃i first checks whether or
not receiver i is rank 1. If so, ψ̃i outputs 1. Otherwise ψ̃i next
checks whether or not receiver i is rank 2. If so, ψ̃i outputs 2.
Otherwise ψ̃i checks whether or not receiver i is rank 3. This
procedure repeats until rank becomes K. Finally, if receiver i
is not rank K, ψ̃i outputs F .

This code (ϕ̃, ψ̃1, ψ̃2, · · · , ψ̃N ) satisfies the following theo-
rem.

Theorem 3: The following triplet is achievable by Coding
Scheme 2 for K-RMOID coding:

(R,E1, E2)

=
((

1 − K + 3
K + `

)
r, E(r),min

{
r

K + `
, E(r)

})
,

0 ≤ r ≤ C, ` = 3, 4, 5, · · · . (70)

Proof: First we consider the case of the noiseless channel.
For each rank j, j = 1, 2, 3, · · · ,K, λ̃(n)

1 (ij |K) can be
evaluated as follows:

λ̃
(n)
1 (ij |K) = Pr

{
j∩

l=1

(hV (ij) 6= hV (il))

}
= 0, (71)
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where the last equality holds because hV (ij) = hV (il) is
satisfied at l = j.

Next we derive an upper bound of λ̃(n)
2 (ij |K) for receiver

ij with rank j. We have

λ̃
(n)
2 (ij |K) = Pr

{
j−1∪
l=1

(hV (ij) = hV (il))

}

≤
j−1∑
l=1

Pr {hV (ij) = hV (il)}

≤ ε(j − 1) ≤ εK, (72)

where the second inequality can be proved in the same way
as (37).
λ̃

(n)
1 (ij |K) and the bound of λ̃(n)

2 (ij |K) are the same as
λ

(n)
1 (i|K) and the bound of λ(n)

2 (i|K) treated in Section II,
respectively. This means that the lower bounds of Ẽ(n)

1 and
Ẽ

(n)
2 are the same as the lower bounds of E(n)

1 and E
(n)
2

derived in Section II, respectively. Hence, if (R,E1, E2) is
achievable for code (ϕ,ψ1, ψ2, · · · , ψN ), it is also achievable
for code (ϕ̃, ψ̃1, ψ̃2, · · · , ψ̃N ). Therefore, Theorem 3 holds
from Theorem 2.

Q.E.D.

In the same way as Coding Scheme 1, we can show that
the coding rate R of Coding Scheme 2 can attain C. On the
other hand, it holds that CK-RMOID ≤ CK-MOID = C. Hence,
we obtain the following corollary.

Corollary 2: The K-RMOID capacity CK-RMOID is given
by

CK-RMOID = C. (73)

Remark 6: The same arguments treated in Sections II-D to
II-G also hold for K-RMOID code (ϕ̃, ψ̃1, ψ̃2, · · · , ψ̃N ).

IV. CONCLUSION

In this paper, we defined the MOID coding and we proposed
efficient and explicit MOID coding schemes for non-ranked
and ranked cases. We derived the achievable triplet of coding
rate and exponents of type I and type II error probabilities,
and we proved that both the K-MOID capacity and the K-
RMOID capacity are equal to the ordinary channel capacity.
Furthermore, we considered the MOID coding with common
randomness, noiseless passive feedback, transmission coding,
and variable K coding.
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