
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.12 DECEMBER 2016
2291

LETTER Special Section on Information Theory and Its Applications

Direct- or Fast-Access Decoding Schemes for VF Codes

Hirosuke YAMAMOTO†a), Fellow and Yuka KUWAORI†∗b), Nonmember

SUMMARY In this paper, we propose two schemes, which enable any
VF code to realize direct- or fast-access decoding for any long source
sequence. Direct-access decoding means that any source symbol of any
position can be directly decoded within constant time, not depending on
the length of source sequence N , without decoding the whole codeword
sequence. We also evaluate the memory size necessary to realize direct-
access decoding or fast-access decoding with decoding delayO(log log N),
O(log N), and so on, in the proposed schemes.
key words: VF code, direct-access decoding, rank function, select function

1. Introduction

Fixed-to-variable length (FV) codes like Huffman codes and
variable-to-fixed length (VF) codes like Tunstall codes are
often used to store big data efficiently. But, since the FV
codes have variable codeword length and the VF codes have
variable parse length, we must decode the codeword se-
quence from the beginning even if we want to decode only
one source symbol of a long source sequence x1x2 · · · xN .
In the case of big data with very large N , the decoding delay
O(N) is not acceptable for the decoding of only one or a few
source symbols.

In order to overcome this defect, direct-access decoding
schemes have been studied such that any x j can be decoded
within constant time.

In the case of FV codes, several direct- or fast-access de-
coding schemes [1]–[7] have been proposed, which uses the
so-called wavelet tree [1], [2], rank and/or select functions.
Especially, in the case of Huffman codes, the direct-access
decoding can be realized with the same coding rate asymp-
totically as the ordinary Huffman code if we use the same
shape of wavelet tree as the Huffman code tree [2], [4].

For a binary sequence b = b1b2 · · · bn, rank function
rank(b, l) and select function select(b, ℓ) are defined as fol-
lows.

rank(b, l) =
l∑

ℓ=1
bℓ, (1)

select(b, ℓ) = min{l : rank(b, l) = ℓ}. (2)

So, the rank function rank(b, l) gives the number of “1”
Manuscript received January 31, 2016.
†The authors are with the Department of Complexity Science

and Engineering, The University of Tokyo, Kashiwa-shi, 277-8561
Japan.
∗Presently, with NS Solutions Corporation.

a) E-mail: hirosuke@ieee.org
b) E-mail: t.yuka.116@gmail.com

DOI: 10.1587/transfun.E99.A.2291

included in the first l bits of b, and the select function
select(b, ℓ) gives the position of the ℓ-th “1” in b. The
rank and select functions can be calculated with constant
time and n + o(n) memory space when the length of b is n
[8]–[10].

On the other hand, few direct-access decoding schemes
have been studied in the case of VF codes. Yoshida-
Sasakawa-Sekine-Kida (YSSK) [11] proposed a direct-
access decoding scheme such that bit bj is assigned to each
x j of source sequence x = x1x2 · · · xN , and bj is set as
bj = 1 if x j is the last source symbol included in the same
codeword, and bj = 0 otherwise. YSSK scheme can be ap-
plied to any VF code. But, since YSSK scheme requires one
bit bj for each x j , YSSK scheme is inefficient when the size
of source alphabet is small. Especially, if the source alphabet
is binary, YSSK scheme cannot attain any compression.

In this paper, in order to improve the above defect of
YSSK scheme, we propose a modified YSSK scheme with a
devised data structure such that after we divide both a source
sequence and its codeword sequence into blocks, we apply
YSSK scheme to the sequence of blocks. Although the mod-
ified YSSK scheme can attain good performance even for bi-
nary source sequences, the performance depends on how to
implement the rank and select functions. So, by combining
the idea of the modified YSSK scheme with the data structure
proposed by Kimura-Suzuki-Sugano-Koike [7] to realize ef-
ficiently the rank function, we also proposed a self-contained
scheme, which does not use rank and select functions, to re-
alize the direct-access decoding or fast-access decoding with
decoding delay O(log log N), O(log N), and so on, for VF
codes.

The modified YSSK scheme and the latter scheme are
treated in Sects. 2 and 3, respectively.

The following notation is used in this paper.

Notation
x : a source sequence x = x1x2 · · · xN .

x j : the j-th symbol of x.
y: the sequence of codewords y = y1 y2 · · · yn, which is

encoded from x by a VF code.
yi: the i-th codeword of y. All yi have the same length

because of VF coding.
N : the length of x.
n: the length of y, i.e. the number of codewords included

in y.
Li: the number of source symbols encoded into codeword
yi .

Copyright © 2016 The Institute of Electronics, Information and Communication Engineers

2292
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.12 DECEMBER 2016

L: the average of Li , i.e., L ≡ N/n.
L+: L+ ≡ maxi Li .
L−: L− ≡ mini Li .
Γi: the number of source symbols included in the first i

codewords y1 y2 · · · yi , i.e., Γi ≡
∑i

l=1 Ll , Γn = N .

2. Modified YSSK Scheme

Assume that a source sequence x is encoded to the sequence
of codewords y by a VF code. In YSSK scheme, one bit bj

is assigned to each x j as follows†.

bj =

{
1, if x j is the first symbol of a codeword.
0, otherwise.

(3)

For any j, we can decode x j directly by using b =
b1b2 · · · bN as follows. Let i = rank(b, j) and m = j −
select(b, i) + 1. Then, the x j is the m-th source symbol
included in codeword yi . Note that yi can easily be obtain
from y since every codeword has the same length in VF
codes. In YSSK scheme, we require N bits to store b besides
y. So, if x j is binary, the total memory size becomes larger
than the size of x.

In order to overcome the above defect, we divide x into
blocks with length A as x = x̂1 x̂2 · · · x̂N/A

††, where x̂u is
the u-th source block defined by x̂u = xA(u−1)+1 · · · xAu . We
also divide y into blocks with length B as y = ŷ1 ŷ2 · · · ŷn/B,
where ŷv is the v-th codeword block defined by ŷv =

yB(v−1)+1 · · · yBv . Note that we can easily obtain ŷv from
y because each yi has the same length in the case of VF
codes. Each ŷv includes at least BL− source symbols. So,
in order to guarantee that each x̂u are encoded within two
consecutive ŷv and ŷv+1, we assume that A and B satisfy
A < BL−.

Then, we assign one bit bu ∈ {0, 1} to each source block
x̂u as follows.

(a) b1 = 1.
(b) For u ≥ 2, bu = 1 if the first source symbol of x̂u is

included in a codeword block ŷv , but the first source
symbol of x̂u−1 is not included in the same ŷv . Other-
wise, bu = 0.

Note that each ŷv corresponds to only one x̂u with bu = 1,
and hence the number of u with bu = 1 is equal to the number
of v , i.e., n/B. But, the beginning of x̂u with bu = 1 does not
coincide with the beginning of ŷv generally. So, we record
the difference in source symbol indexes for each v . Let fb(v)
represent the index of the first source symbol included in ŷv .
Then, the difference dv is given by dv = A(u−1)+1− fb(v)
if “bu = 1” is the v-th “1” in b, and dv takes a value in
{0, 1, · · · , A − 1}.
†Although the last symbol is used to set bj = 1 in [11], we use

the first symbol of a codeword for simplicity.
††For simplicity, we assume that N and n can be divided by A

and B, respectively. If not so, the last x̂ ⌈N/A⌉ and ŷ ⌈n/B⌉ have
shorter lengths than the others.

In more detail, bu and dv can be obtained from
x = x̂1 x̂2 · · · x̂N/A and y = ŷ1 ŷ2 · · · ŷn/B by the follow-
ing algorithm, where fe(v) represents the index of the last
source symbol included in ŷv . Note that fb(v) and fe(v) can
easily be obtained when x is encoded into y sequentially.

Algorithm 1 (Encoding):
Step1 Encode x into y = ŷ1 ŷ2 · · · ŷn/B by a VF code, and

obtain fb(v) and fe(v).
Step2 Set b1 = 1, u = 2, v = 1.
Step3 If fb(v) ≤ A(u − 1) + 1 ≤ fe(v),

bu = 0,
else (i.e., if fe(v) < A(u − 1) + 1),

bu = 1, v = v + 1, dv = A(u − 1) + 1 − fb(v).
Step4 If u = N/A, exit,

else, u = u + 1, go to Step3.

Note that the indexes j of the first and last source sym-
bols included in ŷv are given by A×[select(b, v)−1]−dv+1
and A × [select(b, v + 1) − 1] − dv+1, respectively. Hence,
x j can be decoded directly from y, b = b1b2 · · · bn/B and
d = d1d2 · · · dn/B as follows.

Algorithm 2 (Direct-access decoding):
Step1 v = rank

(
b, ⌈ jA⌉

)
.

Step2 If j > A × [select(b, v + 1) − 1] − dv+1,
then v = v + 1.

Step3 mb = j − A × [select(b, v) − 1] + dv ,
me = A × [select(b, v + 1) − 1] − dv+1 − (j − 1).

Step4 x j is the mb-th source symbol obtained by decoding
ŷv from the beginning, and x j is also the me-th source
symbol obtained by decoding ŷv backward from the
end.

As an example, assume that each yi has Li shown in
Fig. 1. Then dv and bu are obtained by using Algorithm 1
as shown in Figs. 1 and 2, respectively. Furthermore, for
instance, x76 can be directly decoded as follows.

Example 1: Assume that A = 5 and B = 4 are used, and
Li , dv and bu are given as shown in Figs. 1 and 2.

Step1 For j = 76 and A = 5, v = rank(b, ⌈ 76
5 ⌉) =

rank(b, 16) = 7.
Step2 x76 is included in ŷ7 since it holds that

76 ≤ 5 × [select(b, 8) − 1] − d8 = 5[18 − 1] − 4 = 81.
Step3

mb = j − A × [select(b, v) − 1] + dv

= 76 − 5 × [select(b, 7) − 1] + d7

= 76 − 5 × [15 − 1] + 1
= 7

me = A × [select(b, v + 1) − 1] − dv+1 − (j − 1)
= 5 × [select(b, 8) − 1] − d8 − 75
= 5 × [18 − 1] − 4 − 75
= 6

Step4 x76 is the 7-th source symbol obtained by decoding
ŷv forward from the beginning, and x76 is also the 6-th

LETTER
2293

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Li 4 3 2 4 4 2 3 4 4 3 3 2 3 4 2 2 3 3 2 2 4 2 2 2 4 3 2 3 2 4 2 3
Γi 4 7 9 13 17 19 22 26 30 33 36 38 41 45 47 49 52 55 57 59 63 65 67 69 73 76 78 81 83 87 89 92
v 1 2 3 4 5 6 7 8
dv 0 2 4 2 1 1 1 4

Fig. 1 An example of Li , Γi , dv for A = 5 and B = 4.

u 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
bu 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0

Fig. 2 bu in the case of Fig. 1.

source symbol by decoding ŷv backward from the end.

In Step 4 of Algorithm 1, we need to decode at most
B/2 codewords yi to obtain x j . But, decoding time does not
depends on N .

Next we consider the necessary memory size to store b
and d. The length of b is N/A, and dv satisfies 0 ≤ dv ≤ A−1
and d1 = 0. Hence, the total memory size MmYSSK is given
by

MmYSSK =
N
A
+

(n
B
− 1

) ⌈
log A

⌉
<

N
A
+

N (log A + 1)

BL

<
N (log A + 2)

A
. (4)

because N = Ln and A < BL− ≤ BL. Hence, by setting
A a little large and setting B as A < BL−, we can decrease
the memory size considerably compared with the original
YSSK scheme, which requires N bits.

It is worth noting that both YSSK scheme and the mod-
ified YSSK scheme require another memory space to store
the data structure to calculate rank and select functions of
b within constant time. Hence, the performance of these
schemes depends on how to implement these functions.

3. Self-Contained Scheme

An efficient data structure to calculate rank function is pro-
posed in [7]. So, by combining the data structures used in
Sect. 2 and [7], we construct a self-contained scheme that
requires neither the rank function nor the select function in
this section.

In the modified YSSK scheme, y is divided into blocks
ŷv with fixed length B independently from x̂u . But, in this
section, we divide y into blocks with variable length such
that each block ŷv almost corresponds to each x̂v , which has
fixed length A, where v = 1, 2, · · · , NA . Then, we define ŷv

such that the index iv of the last codeword included in ŷv is
given by

iv = max{i : Γi ≤ A · v }. (5)

Now we define d (1)
v , which is the difference between

A · v and Γiv , as follows.

d (1)
v ≡ A · v − Γiv . (6)

Table 1 Memory Size of iv and d(1)
v .

number bits
iv

N
A ⌈log n⌉

d(1)
v

N
A ⌈log L+ ⌉

Then, for direct-access decoding we use {iv }, {d (1)
v }, v =

1, 2, · · · , N/A, which can easily be obtained in the encoding
of x. For simplicity, we set d (1)

0 = 0.
For any j, x j can be directly decoded from y, {iv }, and

{d (1)
v } by the following algorithm.

Algorithm 3 (Direct access decoding):
Step1 v = ⌈ jA⌉
Step2 If j > A · v − d (1)

v , then v = v + 1.
Step3 mb = j − [A · (v − 1) − d (1)

v−1],
me = [A · v − d (1)

v] − j + 1.
Step4 x j is the mb-th source symbol obtained by decoding

y from yiv−1+1, and x j is also the me-th source symbol
obtained by decoding y backward from yiv .

In order to obtain x j , we need to decode at most A/2
codewords. On the other hand, the memory sizes to store
{iv } and {d (1)

v } are shown in Table 1. Hence the total memory
size is given by

N
A

⌈
log

N

L

⌉
+

N
A

⌈
log L+

⌉
<

N
A

(
log

N

L
+ log L+ + 2

)
(7)

where N = nL.
Although the above scheme is self-contained, it is not

efficient because Eq. (7) is larger than Eq. (4). Therefore,
we improve the performance by using a data structure sim-
ilar to [7], i.e., we further divide each block ŷv into sub-
blocks ŷv,w with variable length such that each sub-block
ŷv,w almost corresponds of x̂v,w , which is the sub-block of
x̂v = x̂v,1 x̂v,2 · · · x̂v,A/C and each x̂v,w has fixed length C.†

Then, if w = A/C, the index of the last codeword in-
cluded in ŷv,w is given by iv . For 1 ≤ w ≤ A/C − 1, we
define ŷv,w such that the index of the last codeword included
in ŷv,w is given by iv−1 + iv,w where iv,w is defined by

iv,w ≡ max{l : Γiv−1+l ≤ A · (v − 1) + C · w,
l < iv − iv−1}. (8)

We also define d (2)
v,w by

†For simplicity, we assume that A can be divided by C.

2294
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.12 DECEMBER 2016

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Li 4 3 2 4 4 2 3 4 4 3 3 2 3 4 2 2 3 3 2 2 4 2 2 2 4 3 2 3 2 4 2 3
Γi 4 7 9 13 17 19 22 26 30 33 36 38 41 45 47 49 52 55 57 59 63 65 67 69 73 76 78 81 83 87 89 92
v 1 2 3
iv 9 21 32
d(1)
v 2 1 4
w 1 2 3 4 1 2 3 4 1 2 3 4

iv,w 2 4 7 3 6 9 3 6 9
d(2)
v,w 1 3 2 2 2 1 1 1 3 2 1 4

Fig. 3 An example of Li , Γi , v, iv , d(1)
v , w, iv,w , d(2)

v,w for A = 32 and C = 8.

d (2)
v,w ≡ A · (v − 1) + C · w − Γiv−1+iw,v . (9)

Note that Eqs. (8) and (9) correspond to (5) and (6) in the
one-stage division, respectively.

Then, for direct decoding, we use {iv }, {iw,v }, and
{d (2)

v,w }, which can easily be obtained in the encoding of x. For
simplicity, we set d (2)

v,0 = 0, and also note that d (1)
v = d (2)

v, A
C

.
Let ib and ie represent the indexes of the first and last

codewords included in ŷv,w , respectively, and let jb and je
represent the indexes of the first source symbol included in
yib and the last source symbol included in yie , respectively.
Then, x j can be directly decoded from y, {iv }, {iw,v }, and
{d (2)

v,w } as follows.

Algorithm 4 (Direct access decoding):
Step1 v = ⌈ jA⌉.
Step2 If j > A · v − d (1)

v ,
then v = v + 1, w = 1, go to Step 5.

Step3 w =
⌈
j−A·(v−1)

C

⌉
Step4 If j > A · (v − 1) + C · w − d (2)

v,w , then w = w + 1.
Step5

ib =iv−1 + iv,w−1 + 1,

jb =A · (v − 1) + C · (w − 1) − d (2)
v,w−1 + 1,

mb = j − jb + 1,
ie =iv−1 + iv,w,

je =A · (v − 1) + C · w − d (2)
v,w,

me = je − j + 1.

Step6 x j is the mb-th source symbol obtained by decoding
y from yib , and x j is also the me-th source symbol
obtained by decoding y backward from yie .

As an example, consider the same Li as Fig. 1. Then,
for A = 32, C = 8, {iv }, {iw,v }, and {d (2)

v,w } are obtained
as shown in Fig. 3. Furthermore, for instance, x79 can be
directly decoded as follows.

Example 2: Assume that A = 32 and C = 8 are used, and
{iv }, {iw,v }, and {d (2)

v,w } are given as shown in Fig. 3.

Step1 v = ⌈ 79
32 ⌉ = 3

Step2 x79 is included in ŷ3 since it holds that 79 ≤ 32× 3−
d (1)

3 = 96 − 4 = 92.
Step3 w =

⌈ 79−32×(3−1)
8

⌉
= 2

Step4 Since it holds that 79 > 32× (3− 1) + 8× 2− d (2)
3,2 =

Table 2 Memory size of iv , iv,w , and d(2)
v,w .

number bits
iv

N
A ⌈log n⌉

iv,w
N
C −

N
A ⌈log A

L− ⌉
d(2)
v,w

N
C ⌈log L+ ⌉

64 + 16 − 2 = 78, set w = 2 + 1 = 3. This means that
x79 is included in ŷ3,3.

Step5

ib =i3−1 + i3,3−1 + 1 = 21 + 6 + 1 = 28,

jb =32 × (3 − 1) + 8 × (3 − 1) − d (2)
3,3−1 + 1

=64 + 16 − 2 + 1 = 79,
mb =79 − 79 + 1 = 1,
ie =i3−1 + i3,3 = 21 + 9 = 30,

je =32 × (3 − 1) + 8 × 3 − d (2)
3,3 = 64 + 24 − 1

=87,
me =87 − 79 + 1 = 9.

Step6 x79 is the first source symbol obtained by decoding
y from y28, and x79 is also the 9-th source symbol
obtained by decoding y backward from y30.

In this scheme, we must decode at most C/2 codewords
to obtain x j for any j, and we need the memory size shown
in Table 2 to store {iv }, {iw,v }, and {d (2)

v,w }. Hence, from
N = nL, the total memory size M is given by

M =
N
A

(⌈
log

N

L

⌉
−
⌈
log

A
L−

⌉)
+

N
C

(⌈
log

A
L−

⌉
+ ⌈log L+⌉

)
(10)

<
N
A

(
log

N

L
− log

A
L−
+ 1

)
+

N
C

(
log

A
L−
+ log L+ + 2

)
. (11)

Note that A can be selected independently of the decoding
delay, which depends on C in the two-stage scheme. Hence,
by using relatively large A, the total memory size can be
decreased considerably compared with (7).

Next we consider the order of M . From (10), we have
that

M = O
(

N
A

log
N
A
+

N
C

log A
)
. (12)

LETTER
2295

Table 3 The order of total memory size.
A C M

log N
log log N constant O(N log log N)
log N log log N O(N)

(log N)1+a (log N)a O
(
N log log N

(log N)a
)

Nb bNb O(N1−b log N)

Hence, in the case of the direct-access decoding with C =
constant, the oder of M becomes

M = O(N log log N) (13)

if we use A = O((log N)/(log log N)). In the case of the
fast-access decoding with C = log log N , C = (log N)a,
or C = bNb for a > 0 and 1 ≫ b > 0, the order of M
can be further reduced to O(N), O((N log log N)/(log N)a),
O(N1−b log N), respectively, as shown in Table 3.

4. Conclusion

In this paper, we proposed two schemes that enable the direct-
access decoding for any VF codes. The first scheme is a
modified scheme of [11], which uses rank and select func-
tions. The second scheme is a self-contained scheme, which
does not require rank and select functions.

References

[1] R. Grossi, A. Gupta, and J.S. Vitter, “High-order entropy-compressed
text indexes,” Proc. 14th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp.841–850, 2003.

[2] G. Navarro, “Wavelet trees for all,” Combinatorial Pattern Matching,
Lecture Notes in Computer Science, vol.7354, pp.2–26, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[3] N.R. Brisaboa, A. Fariña, S. Ladra, and G. Navarro, “Reorganiz-
ing compressed text,” Proc. 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval,
SIGIR’08, pp.139–145, 2008.

[4] N.R. Brisaboa, S. Ladra, and G. Navarro, “DACs: Bringing direct
access to variable-length codes,” Inform. Process. Manage., vol.49,
no.1, pp.392–404, 2013.

[5] M.O. Külekci, “Uniquely decodable and directly accessible non-
prefix-free codes via wavelet trees,” Proc. 2013 IEEE International
Symposium on Information Theory, pp.1969–1973, 2013.

[6] M.O. Külekci, “Enhanced variable-length codes: Improved com-
pression with efficient random access,” Proc. 2014 Data Compression
Conference, pp.362–371, 2014.

[7] K. Kimura, Y. Suzuki, S. Sugano, and A. Koike, “Computation of
rank and select functions on hierarchical binary string and its appli-
cation to genome mapping problems for short-read DNA sequences,”
J. Comput. Biol., vol.16, no.11, pp.1601–1613, 2009.

[8] G. Jacobson, “Space-efficient static trees and graphs,” Proc. 30th
Annual Symposium on Foundations of Computer Science, pp.549–
554, 1989.

[9] G. Jacobson, Succinct Static Data Structure, PhD Thesis, Carnegie
Mellon University, 1989.

[10] D. Clark, Compact Pat Tree, PhD Thesis, University of Waterloo,
1996.

[11] S. Yoshida, H. Sasakawa, K. Sekine, and T. Kida, “Direct access
to variable-to-fixed length codes with a succinct index,” Proc. 2014
Data Compression Conference, p.436, 2014.

http://dx.doi.org/10.1007/978-3-642-31265-6_2
http://dx.doi.org/10.1007/978-3-642-31265-6_2
http://dx.doi.org/10.1007/978-3-642-31265-6_2
http://dx.doi.org/10.1145/1390334.1390360
http://dx.doi.org/10.1145/1390334.1390360
http://dx.doi.org/10.1145/1390334.1390360
http://dx.doi.org/10.1145/1390334.1390360
http://dx.doi.org/10.1016/j.ipm.2012.08.003
http://dx.doi.org/10.1016/j.ipm.2012.08.003
http://dx.doi.org/10.1016/j.ipm.2012.08.003
http://dx.doi.org/10.1109/isit.2013.6620570
http://dx.doi.org/10.1109/isit.2013.6620570
http://dx.doi.org/10.1109/isit.2013.6620570
http://dx.doi.org/10.1109/dcc.2014.74
http://dx.doi.org/10.1109/dcc.2014.74
http://dx.doi.org/10.1109/dcc.2014.74
http://dx.doi.org/10.1089/cmb.2008.0146
http://dx.doi.org/10.1089/cmb.2008.0146
http://dx.doi.org/10.1089/cmb.2008.0146
http://dx.doi.org/10.1089/cmb.2008.0146
http://dx.doi.org/10.1109/sfcs.1989.63533
http://dx.doi.org/10.1109/sfcs.1989.63533
http://dx.doi.org/10.1109/sfcs.1989.63533
http://dx.doi.org/10.1109/dcc.2014.75
http://dx.doi.org/10.1109/dcc.2014.75
http://dx.doi.org/10.1109/dcc.2014.75

