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Abstract—This paper considers polar coding for asymmetric
settings, that is, channel coding for asymmetric channels and
lossy source coding for nonuniform sources and/or asymmetric
distortion measures. The difficulty for asymmetric settings comes
from the fact that the optimal symbol distributions of codewords
are not always uniform. It is known that such nonuniform
distributions can be realized by Gallager’s scheme which maps
multiple auxiliary symbols distributed uniformly to an actual
symbol. However, the complexity of Gallager’s scheme increases
considerably for the case that the optimal distribution cannot
be approximated by simple rational numbers. To overcome this
problem for the asymmetric settings, a new polar coding scheme
is proposed, which can attain the channel capacity without
any alphabet extension by invoking results on polar coding for
lossless compression. It is also shown that the proposed scheme
achieves a better tradeoff between complexity and decoding error
probability in many cases.

Index Terms—Asymmetric channels, channel coding, lossy
source coding, polar codes.

I. INTRODUCTION

Recently polar coding has attracted much attention for its

achievability of Shannon bound with polynomial complexity.

Polar codes are originally proposed by Arikan [1] for binary

memoryless symmetric channels and generalized for Galois

fields [2] and arbitrary q-ary alphabets [3]. The idea of polar

codes is also extended to lossless and lossy source coding and

some multiterminal problems [4][5][6].

We consider channel coding with polar codes for asym-

metric memoryless channels and lossy source coding for

nonuniform sources and/or asymmetric distortion measures.

In these asymmetric settings, the optimal symbol distribution

of codewords to achieve the Shannon bound is not always

uniform.

In known polar coding schemes for asymmetric settings,

codewords with a nonuniform symbol distribution are gen-

erated based on Gallager’s scheme [7, p. 208], which uses

nonlinear mapping of symbols illustrated by the following

example. Consider channel coding of an asymmetric channel

such that the optimal input distribution is (PX(0), PX(1)) =
(2/3, 1/3) with alphabet X = {0, 1}. This input distribution
can be realized by considering a ternary polar code with an

extended alphabet X ′ = {a, b, c}. Mapping symbols a, b ∈ X ′

to 0 ∈ X and c ∈ X ′ to 1 ∈ X in codewords, we obtain

codewords on X with the desired distribution. Although this
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technique is simple and applicable widely, a large size of

extended alphabet is required if the optimal distribution PX(·)
cannot be approximated by simple rational numbers. In such

cases, the complexity of decoding increases considerably. (See

Section V for a detailed discussion on the complexity of

Gallager’s scheme.)

To overcome the defect of Gallager’s scheme, we need to

generate the given symbol distribution PX(·) of codewords

without any extended alphabet. A key idea to generate a

desired distribution can be found in the lossless compres-

sion by polar codes [6]. In this setting an original message

Xn
1 = (X1, X2, . . . , Xn) with a nonuniform distribution is

transformed to Un
1 = Xn

1 Gn by the generator matrix Gn of

polar codes. It is shown that the elements of Un
1 polarize

into two groups, F and Fc. For each i ∈ F , Ui is almost

uniformly distributed and independent of the leading sequence

U i−1
1 = (U1, U2, . . . , Ui−1) and, for each i ∈ Fc, Ui is

determined from U i−1
1 almost surely.

Now we apply this technique to channel coding. The result

on the lossless coding implies that, when we have a uniform

source, we can obtain a nonuniform input for a given channel

in the following way: (a) choose a value of Ui uniformly for

each i ∈ F , (b) determine Ui for each i ∈ Fc appropriately

from U i−1
1 and (c) transform Un

1 to Xn
1 by Xn

1 = Un
1 G

−1
n =

Un
1 Gn. In the case of channel coding with channel input X

and channel output Y , Ui for each i ∈ F polarizes further

into I ⊂ F and F \ I, where this polarization corresponds

to lossless source coding with side information [8]. Here I
is the set of indices i such that Ui is almost independent of

U i−1
1 but can be determined uniquely given U i−1

1 and channel

output Y n
1 almost surely. F \I is the set of indices i such that

Ui is almost independent of both U i−1
1 and Y n

1 . By assigning

a message to random variables Ui for i ∈ I we can send

it with small decoding error probability, that is, I ⊂ F can

be used as an information set. The relation between lossless

source coding and channel coding is depicted in Fig. 1.

This idea can also be applied to lossy source coding. In

this case Y n
1 and Xn

1 correspond to a source sequence and

a reproduction sequence, respectively. In lossy source coding,

Ui which is almost random given (U i−1
1 , Y n

1 ) does not need to
be sent because such Ui does not affect the joint distribution

of (Xn
1 , Y

n
1 ) even if Ui is determined independently of Y n

1 .

Furthermore, in the asymmetric case, Ui which is almost

deterministic given U i−1
1 also does not need to be sent because

it can be reproduced in the same way as in lossless coding.

As a result, by sending Ui only for i ∈ I, we can recover Xn
1

within a given distortion.

Note that recently Sutter et al. [9] have considered a channel
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coding scheme for asymmetric settings based on lossless

coding independently of our work. However, their scheme

uses a concatenated code of two polar codes and the code

construction is not simple. Furthermore, the decoding error

probability of their scheme is approximately O(2−n1/4

) since
their scheme requires polarization for both the inner code

and the outer code, whereas we show that the decoding error

probability of our scheme is approximately O(2−n1/2

) by

using a single polar code.

This paper is organized as follows. In Section II, we

introduce polar codes for lossless compression with side infor-

mation considered in [8] and derive a polarization phenomenon

required for our setting. In Section III, we propose a new

polar coding scheme for asymmetric channels and show that

it can achieve the channel capacity asymptotically. We show

in Section IV that the same idea can also be applied to lossy

source coding with nonuniform sources and/or asymmetric

distortion measures. In Section V, we compare the proposed

scheme with Gallager’s scheme in view of coding rates,

complexities and decoding error probabilities. We give proofs

of theorems in the appendices.

II. POLARIZATION FOR ASYMMETRIC SETTINGS

Let (X,Y ) ∈ X × Y be a pair of random variables. In

the case of lossless compression, X and Y correspond to a

source and side information, respectively. For simplicity we

assume that X is binary, i.e., X = {0, 1} = GF(2), but Y
is an arbitrary finite set. We note that the following results

can be extended to nonbinary cases, i.e., |X | ≥ 3 in the same

way as the case of symmetric channels (see [2][3] and [8,

Section VI]). The addition on GF(2) is denoted by operator

⊕.
Let Xn

1 = (X1, X2, . . . , Xn) and Y n
1 = (Y1, Y2, . . . , Yn)

denote i.i.d. copies of X and Y , respectively. For n = 2k,
the generator matrix of polar codes1 is given by Gn = G⊗k

where G =
( 1 0
1 1

)

and ⊗ denotes the Kronecker power. Un
1 is

1More precisely, the generator matrix of a polar code is a submatrix of Gn.
But for simplicity we callGn the generator matrix of polar codes in this paper.
Note also that the generator matrix is sometimes defined as Gn = BnG

⊗k

instead of Gn = G⊗k for the bit-reversal matrix Bn, and both definitions
are essentially equivalent (see [1, Section VII-C]).

defined as Un
1 ≡ Xn

1 G
−1
n = Xn

1 Gn. Let U
j
i , i < j, stand for

subvector (Ui, Ui+1, . . . , Uj) of U
n
1 . Similarly, let UA, A ⊂

{1, 2, . . . , n}, represent subvector {Ui}i∈A.

In the case of channel coding for symmetric binary-input

discrete memoryless channels W , Bhattacharyya parameter

ZB(W ), which is defined by

ZB(W ) ≡
∑

y

√

W (y|0)W (y|1) , (1)

is used to evaluate the error probability. For the case of source

coding with side information, this parameter is extended to

Z(X|Y ) defined as

Z(X|Y ) ≡ 2
∑

y

PY (y)
√

PX|Y (0|y)PX|Y (1|y)

= 2
∑

y

√

PX,Y (0, y)PX,Y (1, y) . (2)

Note that Z(X|Y ) coincides with the Bhattacharyya parameter
ZB(PY |X) when X is uniformly distributed. The parameter

Z(X|Y ) is related to conditional entropy H(X|Y ) by the

following proposition.

Proposition 1 ([8, Proposition 2]).

(Z(X|Y ))2 ≤ H(X|Y ) , (3)

H(X|Y ) ≤ log(1 + Z(X|Y )) ≤ Z(X|Y ) . (4)

Now we give the main result of this section on the polar-

ization for asymmetric cases.

Theorem 1. For any β < 1/2, i.i.d. random variables (X,Y )
and Un

1 = Xn
1 Gn,

lim
n→∞

1

n

∣

∣

∣

{

i : Z(Ui|U
i−1
1 , Y n

1 ) ≤ 2−nβ

and Z(Ui|U
i−1
1 ) ≥ 1− 2−nβ

}
∣

∣

∣
= I(X;Y ) , (5)

lim
n→∞

1

n

∣

∣

∣

{

i : Z(Ui|U
i−1
1 , Y n

1 ) ≥ 1− 2−nβ

or Z(Ui|U
i−1
1 ) ≤ 2−nβ

}∣

∣

∣
= 1− I(X;Y ) . (6)

We prove this theorem in Appendix B using a technique

similar to that for lossless coding by polar codes in [6][8]. In

[8], a recursive formula is derived for Z(Ui|U
i−1
1 , Y n

1 ) and

the polarization of Z(Ui|U
i−1
1 , Y n

1 ) is shown from the fact

that the formula has the same form as the symmetric case. On

the other hand, in [6], the asymptotic optimality is derived by

reducing the source coding problem to a channel coding one.

In this paper we apply this reduction technique to parameter

Z(Ui|U
i−1
1 , Y n

1 ) and show that Z(Ui|U
i−1
1 , Y n

1 ) is equal to a
Bhattacharyya parameter ZB(W̃ ) for some symmetric channel
W̃ . By this representation we can apply known results on the

symmetric settings directly to our asymmetric settings.

Now we review the polarization for symmetric channels. Let

W̃ be a symmetric binary-input discrete memoryless channel

with transition probability W̃ (ỹ|x̃) for x̃ ∈ X = {0, 1} and

ỹ ∈ Ỹ . (X̃, Ỹ ) is a pair of random variables with distribution

PX̃Ỹ (x̃, ỹ) = PX̃(x̃)W̃ (ỹ|x̃), where PX̃ is the uniform dis-

tribution on X . (X̃n
1 , Ỹ

n
1 ) is a sequence of n i.i.d. copies of
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(X̃, Ỹ ). Ũn
1 is defined by Ũn

1 = X̃n
1 G

−1
n = X̃n

1 Gn. The ith
subchannel for a polar code is given by

W̃
(n)
i (ũi−1

1 , ỹn1 |ũi) = PŨi−1
1 ,Ỹ n

1 |Ũi
(ũi−1

1 , ỹn1 |ũi) . (7)

The symmetric capacity of channel W̃ is given by I(W̃ ) =
I(X̃; Ỹ ). The polarization for this symmetric channel is de-

scribed as follows.

Proposition 2 ([6, Theorems 2.11 and 3.15]). For any sym-

metric binary-input discrete memoryless channel W̃ , β < 1/2

and W̃
(n)
i defined by (7),

lim
n→∞

1

n

∣

∣

∣

{

i : ZB(W̃
(n)
i ) ≤ 2−nβ

}
∣

∣

∣
= I(W̃ ) , (8)

lim
n→∞

1

n

∣

∣

∣

{

i : ZB(W̃
(n)
i ) ≥ 1− 2−nβ

} ∣

∣

∣
= 1− I(W̃ ) . (9)

Recall that Xn
1 and Y n

1 are i.i.d. copies of X ∈ X and

Y ∈ Y , respectively, and Un
1 = Xn

1 Gn. The following

theorem enables us to apply known results on symmetric

channels including Proposition 2 to our asymmetric setting.

Theorem 2. Let Ỹ = {0, 1} × Y and Ỹ n
1 = (X̃n

1 ⊕Xn
1 , Y

n
1 )

where (Xn
1 , Y

n
1 ) is independent of X̃n

1 . Then, for W̃
(n)
i defined

by (7),

PUi
1,Y

n
1
(ui

1, y
n
1 ) = 2n−1W̃

(n)
i (ui−1

1 , (0n, yn1 )|ui) (10)

and

Z(Ui|U
i−1
1 , Y n

1 ) = ZB(W̃
(n)
i ) . (11)

We prove this theorem in Appendix A.

III. POLAR CODES FOR ASYMMETRIC CHANNELS

In this section we propose a new polar coding scheme which

can achieve the capacity for asymmetric memoryless channels.

A. Code Construction

Assume that an information set I ⊂ {1, 2, . . . , n} and a

frozen set Ic = {1, 2, . . . , n}\I are fixed for a given channel

W . We use bits uI = {ui}i∈I to send a message.

In the case of symmetric channels, the values of frozen

bits uIc are chosen randomly with the uniform distribution

on {0, 1} in the code construction but they are fixed when

the code is used. In our scheme, the frozen bits uIc are

deterministic but dependent on the value of previous bits ui−1
1 .

Furthermore, unlike the symmetric case, we choose the value

of ui given ui−1
1 not uniformly in the code construction.

Let Li be the family of functions λi : {0, 1}
i−1 → {0, 1}.

Now we consider a polar code with frozen set Ic and maps

λIc ≡ {λi}i∈Ic . The maps λIc are used to determine the

frozen bits and are shared between the encoder and the

decoder.

Let M
|I|
1 denote a message uniformly distributed on

{0, 1}|I|. The encoder determines a codeword from a real-

ization m
|I|
1 of M

|I|
1 in the following way. First, the encoder

determines the information bits by uI = m
|I|
1 . Next, for the

frozen bits Ic, the encoder determines the value ui, i ∈ Ic,

in the ascending order by ui = λi(u
i−1
1 ). We represent the

resulting sequence of ui by un
1 (m

|I|
1 , λIc). Third, the encoder

sends the codeword xn
1 = un

1Gn = un
1 (m

|I|
1 , λIc)Gn with

code length n. Thus the coding rate is given by R = |I|/n.
The decoder receives a sequence yn1 according to the chan-

nel transition probability Wn(yn1 |x
n
1 ). The decoder estimates

un
1 by ûn

1 = ûn
1 (y

n
1 , λIc) as follows:

ûi =







argmax
u

PUi|U
i−1
1 ,Y n

1
(u|ûi−1

1 , yn1 ) i ∈ I,

λi(û
i−1
1 ) i ∈ Ic.

(12)

The decoding is successful if ûI = uI which means ûn
1 =

un
1 . The average decoding error probability over the uniform

message M
|I|
1 is denoted by Pe(λIc).

Now consider the choice of the map λIc . Let ΛIc ≡ {Λi ∈
Li}i∈Ic be random variables which are independent of each

other and of (Xn
1 , Y

n
1 ), and satisfy

PΛi
[Λi(u

i−1
1 ) = 1] = PUi|U

i−1
1

(1|ui−1
1 ) (13)

for all ui−1
1 ∈ {0, 1}i−1. Practically, we can realize this

randomized map by using pseudo random numbers shared

between the encoder and the decoder as follows.

ui =

{

0 with probability PUi|U
i−1
1

(0|ui−1
1 ) ,

1 with probability PUi|U
i−1
1

(1|ui−1
1 ) .

(14)

The idea of this randomized algorithm comes from the polar

coding for lossy compression for symmetric sources [5][6],

where this technique is called randomized rounding. As in

the case of the lossy coding for symmetric sources, the

randomization makes the theoretical analysis much easier in

our setting.

From Theorem 1 there exists a subset I of {1, · · · , n} such
that |I| = nR,

Z(Ui|U
i−1
1 , Y n

1 ) ≤ 2−nβ

and Z(Ui|U
i−1
1 ) ≥ 1− 2−nβ

(15)

for all i ∈ I if R < I(X;Y ), β < 1/2, and n is sufficiently

large. For this I the following theorem holds.

Theorem 3. Let M
|I|
1 be a message chosen uniformly from

{0, 1}|I| and I ⊂ {1, · · · , n} be a set satisfying (15). Then the

expectation of the decoding error probability over the maps

ΛIc satisfies EΛIc [Pe(ΛIc)] = O(2−nβ′
) for any β′ < β <

1/2. Consequently, there exists a deterministic map λIc =

{λi ∈ Li}i∈Ic such that Pe(λIc) = O(2−nβ′
).

The proof of this theorem is given in Appendix C.

B. Implementation

In the construction of the proposed coding scheme, in-

formation set I has to be chosen from {1, . . . , n} so that

Z(Ui|U
i−1
1 , Y n

1 ) is small and Z(Ui|U
i−1
1 ) is large for every

i ∈ I. From Theorem 2 these parameters can be represented

as Bhattacharyya parameters for symmetric channels and the

approximation technique in [10] for symmetric cases can be

applied.

In the encoding of the proposed polar coding scheme, proba-

bility PUi|U
i−1
1

(u|ui−1
1 ) in (14) has to be computed. Similarly,

in the decoding, we need to compute PUi|U
i−1
1 ,Y n

1
(u|ûi−1

1 , yn1 )
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in (12) and PUi|U
i−1
1

(u|ui−1
1 ) in (14). From (10) in Theorem

2, we can represent the ratio of the posterior probability by

PUi|U
i−1
1 ,Y n

1
(1|ûi−1

1 , yn1 )

PUi|U
i−1
1 ,Y n

1
(0|ûi−1

1 , yn1 )
=

PUi
1,Y

n
1
((ûi−1

1 , 1), yn1 )

PUi
1,Y

n
1
((ûi−1

1 , 0), yn1 )

=
W̃

(n)
i ((0n, yn1 ), û

i−1
1 |1)

W̃
(n)
i ((0n, yn1 ), û

i−1
1 |0)

. (16)

Since the RHS of (16) can be computed with com-

plexity O(n log n) by the decoding technique of polar

codes for symmetric channel [1], we can also compute

PUi|U
i−1
1 ,Y n

1
(u|ûi−1

1 , yn1 ) with complexity O(n logn). We can

compute PUi|U
i−1
1

(u|ui−1
1 ) similarly by letting Y be a constant

random variable.

IV. APPLICATION TO LOSSY SOURCE CODING

In this section we consider polar coding for nonuniform

sources and/or asymmetric distortion measures.

For information source Y ∈ Y and distortion measure d :
Y×{0, 1} → [0,+∞), the rate-distortion function is given by

R(D) = min
X′:EXY [d(Y,X′)]≤D

I(X ′;Y ) . (17)

The random variable achieving this minimum is denoted by

X in the following.

Now we construct a polar code for the lossy coding problem.

Assume that an information set I ⊂ {1, . . . , n} and a frozen

set Ic = {1, . . . , n} \ I are given and satisfy |I| = nR and

Z(Ui|U
i−1
1 , Y n

1 ) ≥ 1− 2−nβ

or Z(Ui|U
i−1
1 ) ≤ 2−nβ

(18)

for all i ∈ Ic. From Theorem 1, such I exists if R >
I(X;Y ) = R(D), β < 1/2 and n is sufficiently large.

As in the case of channel coding, let Li be the family

of functions λi : {0, 1}i−1 → {0, 1} and assume that

λIc ∈
∏

i∈Ic Li is shared between the encoder and the

decoder. In the proposed scheme, the encoder determines

un
1 = un

1 (λIc , yn1 ) from a given source sequence yn1 by

ui =

{

0 with probability PUi|U
i−1
1 ,Y n

1
(0|ui−1

1 , yn1 )

1 with probability PUi|U
i−1
1 ,Y n

1
(1|ui−1

1 , yn1 )
(19)

for i ∈ I and

ui = λi(u
i−1
1 ) (20)

for i ∈ Ic. The encoder sends uI to the decoder. The decoder

determines uIc by ui = λi(u
i−1
1 ) and outputs reproduction

sequence xn
1 = un

1Gn. Then, the coding rate is given by R =
|I|/n. We define the average distortion by

Dn(λIc) ≡
1

n
EY n

1

[

E[dn(Y n
1 , un

1 (λIc , Y n
1 )Gn)]

]

(21)

where dn(yn1 , x
n
1 ) ≡

∑n
i=1 d(yi, xi) and the inner expectation

is taken over randomization in (19).

As in the case of channel coding, we consider the expec-

tation of Dn(ΛIc) for random variable ΛIc such that PΛi
[Λi

(ui−1
1 ) = 1] = PUi|U

i−1
1

(1|ui−1
1 ) for all ui−1

1 ∈ {0, 1}i−1.

Theorem 4. Let I ⊂ {1, . . . , n} be a set satisfying (18). Then

the expectation of the average distortion Dn(ΛIc) over the

maps ΛIc satisfies EΛIc [Dn(ΛIc)] = D +O(2−nβ′
) for any

R > R(D) and β′ < β < 1/2. Consequently, there exists a

deterministic map λIc = {λi ∈ Li}i∈Ic such that Dn(λIc) =

D +O(2−nβ′
).

The proof follows the same line as that of Theorem 3 and

is given in Appendix D.

Remark 1. In the lossy coding for symmetric setting [6], uIc

is determined beforehand uniformly from {0, 1}|I
c| and the

randomized map ΛIc for the frozen set is not required. In our

setting, the achievability of the rate-distortion function can be

proved in the similar way as [6] for a simplified rule such that

for i ∈ Ic

ui =







ūi, if Z(Ui|U
i−1
1 , Y n

1 ) ≥ 1− 2−nβ

,

argmax
u

PUi|U
i−1
1

(u|ui−1
1 ), if Z(Ui|U

i−1
1 ) ≤ 2−nβ

,

(22)

instead of (20), where ūi is determined beforehand uniformly

from {0, 1}. However, since this rule makes the proof of

Theorem 4 a little longer, we use the map ΛIc for simplicity

although ΛIc has to be shared between the encoder and the

decoder.

V. COMPARISON WITH GALLAGER’S SCHEME

In this section we compare the proposed scheme with

Gallager’s scheme using the alphabet extension [7]. We mainly

consider polar codes with generator matrix Gn = G⊗k for

a 2 × 2 matrix G over GF(q) used in [2][3] to implement

Gallager’s scheme and later discuss other implementations. In

Gallager’s scheme we only treat the case that block length n
is taken sufficiently large for a fixed size q of the extended

alphabet although one may be interested in the case that q
increases with the block length. It is because, in Gallager’s

scheme, the original channel is transformed into a q-input |Y|-
output channel, which has different characteristics depending

on q. Since the asymptotic decoding error probability O(2−nβ

)
in, e.g., Theorem 3 or [11, Theorem 1] of polar codes is

derived for a fixed channel and the dependency on the channel

is neglected, it is very difficult to analyze the asymptotic

performance of Gallager’s scheme with increasing q. Hence,
we do not consider such cases in this paper.

A. Coding Rate and Complexity

First we consider the coding rate of Gallager’s scheme.

The achievable rate by input distribution p = (p0, p1) =
(PX(0), PX(1)) is given by

I(p) =
∑

x,y

PX(x)W (y|x) log
PX(x)W (y|x)

PX(x)
∑

x′ PX(x′)W (y|x′)

(23)

with the optimal input distribution

p
∗ = argmax

p:
∑

i pi=1

I(p) . (24)
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From the smoothness of I(p), the objective function is ap-

proximated by

I(p) = I(p∗) + (p− p
∗)H(I(p))|p=p∗(p− p

∗)⊤

+ o(‖p− p
∗‖2)

= C(W ) + (p− p
∗)H(I(p))|p=p∗(p− p

∗)⊤

+ o(‖p− p
∗‖2) (25)

in the neighborhood of p∗ where H(I) is the Hessian of I and
⊤ denotes the transpose2. Gallager’s scheme can approximate

the optimal distribution p
∗ by a distribution p such that

‖p − p
∗‖ = O(1/q) and the gap of the achievable rate is

expressed as ∆I = I(p∗)−I(p) = O(‖p−p
∗‖2) = O(1/q2).

On the other hand, the successive cancellation of polar codes

requires convolutions of q-ary symbols, a naive implementa-

tion of which has complexity O(q2) and it can be reduced

to O(q log q) by the technique of fast Fourier transformation

when q is a power of prime as mentioned in [13, Section III-B],
although it has not been shown that they are the best possible.

As a result, Gallager’s scheme currently requires complexity

at least O((∆I)−1/2n log n). In contrast, our scheme always

bounds the complexity by O(n log n) independent of the

coding rate.

We can also consider the coding problem of an AWGN

channel with an average power constraint. In this problem the

optimal input distribution to achieve the capacity C(W ) =
(1/2) log(1 + SNR) is a normal distribution, which has to

be approximated by a discrete distribution in practice. As

discussed in [9], the gap of the capacity of Gallager’s scheme

is given by O(1/q) [13], but that of the proposed scheme is

exponentially small in q [14]. Therefore, the proposed scheme
can achieve the same coding rate as that of Gallager’s scheme

by a logarithmically small alphabet size q.

It is worth noting that the optimal input distribution of an

AWGN channel has a discrete finite support if the peak power

of the channel input is constrained in addition to the average

power [15]. Furthermore, many continuous-output channels

have discrete optimal input distributions under the average

power constraint and/or the peak power constraints [16]. In

such cases, the proposed scheme can realize the optimal input

distribution without alphabet extension.

B. Decoding Error Probability

Next we compare the decoding error probabilities of these

schemes. In the second-order analysis for binary polar codes

[17][18][19], it is shown that the decoding error probability

can be expressed as

Pe = 2−2
k
2
+

√
k

2
Q−1( R

C(W ) )+o(
√

k)

(26)

for any symmetric channel W , where Q−1 is the inverse of

the error function Q(t) =
∫ +∞

t
(2π)−1/2 exp(−s2/2)ds. This

result can be extended to polar codes with a prime size q of a

2Refer, e.g., [12, Theorem 4] and its proof for detail, where the second-order
approximation of the objective function is considered to derive a necessary
condition for an optimal solution of a constrained optimization problem.

channel input (see [20, Section VII]) and the error probability

can be written in the same form as (26), say

Pe,Gallager = 2−2
k
2
+

√
k

2
Q−1( R

I(p) )+o(
√

k)

, (27)

for Gallager’s scheme. On the other hand in the proposed

scheme, we have

lim
n→∞

1

n

∣

∣

∣

∣

∣

{

i : Z(Ui|U
i−1
1 ) ≥ 1− 2−2

k
2
+

√
k

2
Q−1( R2

H(X) )+o(
√

k)

Z(Ui|U
i−1
1 , Y n

1 ) ≤ 2−2
k
2
+

√
k

2
Q−1( 1−R1

1−H(X|Y ) )+o(
√

k)

}
∣

∣

∣

∣

∣

= R2 −R1 , (28)

for any R1 > H(X|Y ) and R2 < H(X) by applying the

second-order analysis to (5) in Theorem 1. This result induces

a polar code with coding rate R = R2 − R1 with error

probability

Pe,propose = 2−2
k
2
+

√
k

2
Q−1( 1−R1

1−H(X|Y ) )+o(
√

k)

+ 2−2
k
2
+

√
k

2
Q−1( R2

H(X) )+o(
√

k)

= 2−2
k
2
+

√
k

2
Q−1(max{ 1−R1

1−H(X|Y )
,

R2
H(X)})+o(

√
k)

, (29)

which is optimized as

Pe,propose = 2−2
k
2
+

√
k

2
Q−1( 1+R

1+C(W ) )+o(
√

k)

(30)

by setting R1 = (H(X)−R(1−H(X|Y )))/(1+C(W )) and
R2 = H(X)(1 +R)/(1 + C(W )). Note that

1 +R

1 + C(W )
>

R

C(W )
(31)

always holds for R < C(W ) = I(p∗). Therefore, in view of

(27) and (30), the decoding error probability of the proposed

scheme is asymptotically worse than Gallager’s scheme if it

can exactly realize the optimal input distribution p
∗. However,

in the case that the input distribution p of Gallager’s scheme

is different from p
∗, the proposed scheme has a better second-

order exponent if

1 +R

1 + C(W )
<

R

I(p)

⇐⇒ R > I(p)− C(W )−∆I
1+∆I ∆I ≈ I(p)− C(W )∆I (32)

where ∆I = C(W ) − I(p). The analysis of the error

probability is summarized as follows: (a) if C(W ) = I(p∗) >
R > I(p) then only the proposed scheme can achieve any

small error probability, (b) if I(p) > R & I(p) − C(W )∆I
then both schemes achieve any small error probability but the

proposed scheme has a better second-order error exponent,

and (c) if I(p) − C(W )∆I & R then Gallager’s scheme has

a better second-order error exponent.
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C. Extension to General Kernels

In the above analyses we have mainly considered polar

codes with generator matrix G⊗k for 2 × 2 matrices G over

GF(2) in the proposed scheme and GF(q) in Gallager’s

scheme. In this section, we discuss generalization of the kernel

G to l× l matrices over GF(q̃) by regarding log2 q̃ symbols in
the proposed scheme (or logq q̃ symbols in Gallager’s scheme)
as one symbol over GF(q̃).

It is shown in [2][20][21] that the decoding error probability

can be expressed as O(2−lkE(G)

) for some first-order error

exponent E(G) ∈ (0, 1), which can be increased when we use
large l and q̃. Here note that E(G) can be maximized by l× l
Reed-Solomon matrix over GF(l) with exponent E(GRS) =
log(l!)/(l log l) when the size of the matrix l is fixed [20].

This means that, although a larger q̃ increases the complexity,
q̃ larger than l does not improve the error exponent.

On the other hand in Gallager’s scheme, q̃ ≥ q is required

where q depends on the coding rate to be achieved. Thus we

need to use l ≥ q to take full advantage of the extended

alphabet size q of Gallager’s scheme, a naive implementa-

tion of which seems to require complexity O(qln log n) ≥
O(qqn log n) (even if the technique of fast Fourier transfor-

mation is used). Then we conclude that the proposed scheme

can achieve a better tradeoff between the (first-order) error

exponent and the complexity than Gallager’s scheme unless

exponential complexity in q is allowed, since we can design a
kernel G without any constraint on the alphabet size q̃ in the

proposed scheme.

Note that a technique of multiple access channel (MAC)

coding [22] can also be applied to Gallager’s scheme.

In this technique, m = log q virtual users transmit

x[1], x[2], · · · , x[m] ∈ {0, 1} via a single channel with transi-

tion probability WMAC(y|{x[j]}j=1,2,··· ,m). By letting

WMAC(y|{x[j]}j) =

{

W (y|0), if {x[j]}j ⊂ S,

W (y|1), otherwise
(33)

for some S ⊂ {0, 1}m such that |S| = 2mPX(0), we can

express the coding problem of asymmetric channels as a

MAC coding with sum-rate I({X[j]}j ;Y ) for the uniform

input {X[j]}j ∈ {0, 1}m. This uniform sum rate can be

achieved asymptotically by m binary polar codes such that the

channel input of the j-th user is given by xn
1 [j] = un

1 [j]Gn ∈
{0, 1}n for generator matrix Gn of binary polar codes. It is

suggested in [22] that the complexity of Gallager’s scheme

may be improved by this technique since this technique uses

m = log q binary polar codes instead of a single q-ary
polar code. However, since the analysis of MAC polar codes

heavily depends on the property of binary input, it is currently

unknown whether polar codes over GF(q̃) can be used for

MAC coding to improve the exponent of the error probability.

APPENDIX

A. Proof of Theorem 2

Denote a member of Ỹn = {0, 1}n×Yn by ỹn1 = (z̃n1 , y
n
1 ).

Then we have

W̃
(n)
i (ũi−1

1 , ỹn1 |ũi)

= PŨi−1
1 ,Ỹ n

1 |Ũi
(ũi−1

1 , ỹn1 |ũi)

=
∑

xn
1

PXn
1 ,Y n

1 ,X̃n
1 ,Ũi−1

1 |Ũi
(xn

1 , y
n
1 , z̃

n
1 ⊕ xn

1 , ũ
i−1
1 |ũi)

(a)
=

∑

xn
1

PXn
1 ,Y n

1
(xn

1 , y
n
1 )PX̃n

1 ,Ũi−1
1 |Ũi

(z̃n1 ⊕ xn
1 , ũ

i−1
1 |ũi)

(b)
= 2

∑

xn
1

PXn
1 ,Y n

1
(xn

1 , y
n
1 )PX̃n

1
(z̃n1 ⊕ xn

1 )

· 11
[

((z̃n1 ⊕ xn
1 )Gn)

i
1 = ũi

1

]

(c)
= 2−n+1

∑

xn
1

PXn
1 ,Y n

1
(xn

1 , y
n
1 ) 11

[

(xn
1Gn)

i
1 = ũi

1 ⊕ (z̃n1Gn)
i
1

]

(d)
= 2−n+1PUi

1,Y
n
1
(ũi

1 ⊕ (z̃n1Gn)
i
1, y

n
1 ) , (34)

where 11 [·] denotes the indicator function, i.e. 11 [true] = 1 and

11 [false] = 0, and the equalities follow from

(a): (X̃n
1 , Ũ

n
1 ) is independent of (X

n
1 , Y

n
1 ),

(b): PX̃n
1 ,Ũi−1

1 |Ũi
= PX̃n

1
PŨi

1|X̃
n
1
/PŨi

and Ũn
1 = X̃n

1 Gn,

(c): X̃n
1 is uniformly distributed over {0, 1}n,

(d): Un
1 = Xn

1 Gn.

We obtain (10) by letting z̃n1 = 0n1 .
Now we prove (11). From the definition of ZB and (34) we

have

ZB(W̃
(n)
i )

=
∑

ỹn
1 ,ũi−1

1

√

PŨi−1
1 ,Ỹ n

1 |Ũi
(ũi−1

1 , ỹn1 |0)PŨi−1
1 ,Ỹ n

1 |Ũi
(ũi−1

1 , ỹn1 |1)

=
∑

z̃n
1 ,yn

1 ,ũi−1
1

√

2−n+1PUi
1,Y

n
1
((ũi−1

1 , 0)⊕ (z̃n1Gn)i1, y
n
1 )

·
√

2−n+1PUi
1,Y

n
1
((ũi−1

1 , 1)⊕ (z̃n1Gn)i1, y
n
1 )

= 2−n+1
∑

z̃n
1 ,yn

1 ,ũi−1
1

√

PUi
1,Y

n
1
((ũi−1

1 ⊕ (z̃n1Gn)
i−1
1 , 0), yn1 )

·
√

PUi
1,Y

n
1
((ũi−1

1 ⊕ (z̃n1Gn)
i−1
1 , 1), yn1 ) . (35)

Let zn1 ≡ z̃n1Gn and ui−1
1 ≡ ũi−1

1 ⊕(z̃n1Gn)
i−1
1 = ũi−1

1 ⊕zi−1
1 .

Since (z̃n1 , ũ
i−1
1 ) 7→ (zn1 , u

i−1
1 ) is a bijection on {0, 1}n ×

{0, 1}i−1, it holds that

ZB(W̃
(n)
i )

= 2−n+1
∑

zn
1 ,yn

1 ,ui−1
1

√

PUi
1,Y

n
1
((ui−1

1 , 0), yn1 )

·
√

PUi
1,Y

n
1
((ui−1

1 , 1), yn1 )

= 2
∑

yn
1 ,ui−1

1

√

PUi
1,Y

n
1
((ui−1

1 , 0), yn1 ) · PUi
1,Y

n
1
((ui−1

1 , 1), yn1 )

= Z(Ui|U
i−1
1 , Y n

1 ) (36)

and the proof is completed.
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B. Proof of Theorem 1

First we have

I(W̃ ) = I(X̃; X̃ ⊕X,Y )

= H(X̃ ⊕X,Y )−H(X̃ ⊕X,Y |X̃)

(a)
= 1 +H(Y )−H(X,Y |X̃)

(b)
= 1−H(X|Y ) , (37)

where (a) holds since X̃ is uniformly distributed and in-

dependent of Y , and (b) follows from the independence

between (X,Y ) and X̃ . Combining (37) with Theorem 2 and

Proposition 2 we have

lim
n→∞

1

n

∣

∣

∣

{

i : Z(Ui|U
i−1
1 , Y n

1 ) ≤ 2−nβ
} ∣

∣

∣
= 1−H(X|Y ) ,

(38)

lim
n→∞

1

n

∣

∣

∣

{

i : Z(Ui|U
i−1
1 , Y n

1 ) ≥ 1− 2−nβ
} ∣

∣

∣
= H(X|Y ) .

(39)

Next consider the case that Y is a random variable

which takes a fixed value with probability 1. For this case

Z(Ui|U
i−1
1 , Y n

1 ) = Z(Ui|U
i−1
1 ) and H(X|Y ) = H(X).

Thus, (38) and (39) become

lim
n→∞

1

n

∣

∣

∣

{

i : Z(Ui|U
i−1
1 ) ≤ 2−nβ

} ∣

∣

∣
= 1−H(X) , (40)

lim
n→∞

1

n

∣

∣

∣

{

i : Z(Ui|U
i−1
1 ) ≥ 1− 2−nβ

} ∣

∣

∣
= H(X) . (41)

Let A–D be the sets of indices defined by

A ≡ {i : Z(Ui|U
i−1
1 , Y n

1 ) ≤ 2−nβ

} , (42)

B ≡ {i : Z(Ui|U
i−1
1 , Y n

1 ) ≥ 1− 2−nβ

} , (43)

C ≡ {i : Z(Ui|U
i−1
1 ) ≤ 2−nβ

} , (44)

D ≡ {i : Z(Ui|U
i−1
1 ) ≥ 1− 2−nβ

} . (45)

It is easy to see that B ∩ C is empty for sufficiently large

n from Proposition 1 and H(Ui|U
i−1
1 , Y n

1 ) ≤ H(Ui|U
i−1
1 ).

Furthermore, we also note from (38)–(41) that

lim
n→∞

|A|+ |B|

n
= lim

n→∞

|C|+ |D|

n
= 1 . (46)

Hence (5) and (6) hold because

lim
n→∞

|B ∪ C|

n
= lim

n→∞

|B|+ |C|

n
= 1− I(X;Y ) (47)

and

lim
n→∞

|A ∩D|

n
= 1− lim

n→∞

|B ∪ C|

n
= I(X;Y ) . (48)

C. Proof of Theorem 3

Let Ei be the set of pairs of codeword un
1 = un

1 (M
|I|
1 , λIc)

and received word yn1 such that decoding error occurs at the ith
bit. The block decoding error event is given by E ≡

⋃

i∈I Ei.

Under decoding given in (12) with an arbitrary tie-breaking

rule, every (un
1 , y

n
1 ) ∈ Ei satisfies

PUi|U
i−1
1 ,Y n

1
(ui|u

i−1
1 , yn1 )

≤ PUi|U
i−1
1 ,Y n

1
(ui ⊕ 1|ui−1

1 , yn1 ) . (49)

Consider the block decoding error probability Pe(λIc) for
map λIc . Since each codeword un

1 appears with probability

2−|I| 11

[

⋂

i∈Ic

{λi(u
i−1
1 ) = ui}

]

, (50)

Pe(λIc) is given by

Pe(λIc) =
∑

un
1 ,y

n
1

2−|I| 11

[

⋂

i∈Ic

{λi(u
i−1
1 ) = ui}

]

· PY n
1 |Un

1
(yn1 |u

n
1 ) 11 [(u

n
1 , y

n
1 ) ∈ E ] . (51)

From (13), the expectation of the decoding error probability

is obtained as

EΛIc [Pe(ΛIc)] =
∑

un
1 ,y

n
1

2−|I|

(

∏

i∈Ic

PUi|U
i−1
1

(ui|u
i−1
1 )

)

· PY n
1 |Un

1
(yn1 |u

n
1 ) 11 [(u

n
1 , y

n
1 ) ∈ E ] . (52)

Then, using probability distribution QUn
1 ,Y n

1
defined as

QUn
1 ,Y n

1
(un

1 , y
n
1 )

≡ PY n
1 |Un

1
(yn1 |u

n
1 )2

−|I|
∏

i∈Ic

PUi|U
i−1
1

(ui|u
i−1
1 ) , (53)

we can represent (52) as EΛIc [Pe(ΛIc)] = QUn
1 ,Y n

1
(E). Let

‖F −G‖ be the variational distance defined by

‖F −G‖ ≡
1

2

∑

x

|F (x)−G(x)|

=
∑

x:F (x)>G(x)

(F (x)−G(x)) (54)

for probability distributions F and G. The variational distance
between QUn

1 ,Y n
1
and PUn

1 ,Y n
1
satisfies the following lemma.

Lemma 1. For any β < 1/2 satisfying (15) and β′ < β,

‖PUn
1 ,Y n

1
−QUn

1 ,Y n
1
‖ = O(2−nβ′

) . (55)

Proof: We use an argument similar to [6, Lemma 3.5]

based on the expression

Bn
1 −An

1 =
n

∑

i=1

Ai−1
1 Bn

i −
n

∑

i=1

Ai
1B

n
i+1

=
n

∑

i=1

(Bi −Ai)A
i−1
1 Bn

i+1 (56)

where Ak
j and Bk

j denote products
∏k

i=j Ai and
∏k

i=j Bi,

respectively.

For simplicity, we omit the symbols of random variables,

e.g. P (un
1 , y

n
1 ) and Q(ui|u

i−1
1 , yn1 ) for PUn

1 ,Y n
1
(un

1 , y
n
1 ) and

QUi|U
i−1
1 ,Y n

1
(ui|u

i−1
1 , yn1 ) in the following. Now ‖PUn

1 ,Y n
1
−

QUn
1 ,Y n

1
‖ is bounded as (57), where D(·‖·) is the relative

entropy, and equality (a) and inequalities (b)–(d) follow from
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(a): (56) and Q(yn1 |u
n
1 ) = P (yn1 |u

n
1 ),

(b): Q(ui|u
i−1
1 ) = P (ui|u

i−1
1 ) for i ∈ Ic,

(c): ‖F −G‖ ≤
√

(ln 2)D(F‖G)/2 by Pinsker’s inequality

(see, e.g., [23, Lemma 11.6.1]),

(d): Jensen’s inequality.

(See below for Eq. (57).)

Hence, it holds that

2‖PUn
1 ,Y n

1
−QUn

1 ,Y n
1
‖

≤
∑

i∈I

√

(2 ln 2)D(PUi
‖QUi

|U i−1
1 )

(e)
=

∑

i∈I

√

(2 ln 2)(1−H(Ui|U
i−1
1 ))

(f)

≤
∑

i∈I

√

(2 log 2)(1− (Z(Ui|U
i−1
1 ))2)

(g)

≤ n
√

(4 log 2) · 2−nβ

(h)
= O(2−nβ′

) , (58)

where the equalities and the inequalities follow from (e):

QUi|U
i−1
1

= 1
2 for i ∈ I, (f): Proposition 1, (g): (15) and (h):

β′ < β.

Proof of Theorem 3: First we have

EΛIc [Pe(ΛIc)] = QUn
1 ,Y n

1
(E)

≤ ‖QUn
1 ,Y n

1
− PUn

1 ,Y n
1
‖+ PUn

1 ,Y n
1
(E)

≤ ‖QUn
1 ,Y n

1
− PUn

1 ,Y n
1
‖+

∑

i∈I

PUn
1 ,Y n

1
(Ei) .

(59)

Each term in the summation can be bounded as

PUn
1 ,Y n

1
(Ei)

≤
∑

ui
1,y

n
1

P (ui−1
1 , yn1 )P (ui|u

i−1
1 , yn1 )

· 11
[

P (ui|u
i−1
1 , yn1 ) ≤ P (ui ⊕ 1|ui−1

1 , yn1 )
]

≤
∑

ui
1,y

n
1

P (ui−1
1 , yn1 )P (ui|u

i−1
1 , yn1 )

√

P (ui ⊕ 1|ui−1
1 , yn1 )

P (ui|u
i−1
1 , yn1 )

= Z(Ui|U
i−1
1 , Y n

1 )

≤ 2−nβ

, (60)

where the last inequality follows from (15). From (55), (59)

and (60), we have EΛIc [Pe(ΛIc)] = O(2−nβ′
).

D. Proof of Theorem 4

For a source sequence yn1 and the encoding rule (19), un
1 =

un
1 (y

n
1 , λIc) appears with probability

(

∏

i∈I

PUi|U
i−1
1 ,Y n

1
(ui|u

i−1
1 , yn1 )

)

11

[

⋂

i∈Ic

{λi(u
i−1
1 ) = ui}

]

.

(61)

The average distortion for map ΛIc = λIc is expressed as

Dn(λIc)

=
1

n

∑

un
1 ,y

n
1

PY n
1
(yn1 )

(

∏

i∈I

PUi|U
i−1
1 ,Y n

1
(ui|u

i−1
1 , yn1 )

)

· 11

[

⋂

i∈Ic

{λi(u
i−1
1 ) = ui}

]

dn(yn1 , u
n
1Gn) (62)

2‖PUn
1 ,Y n

1
−QUn

1 ,Y n
1
‖ =

∑

un
1 ,y

n
1

|Q(un
1 , y

n
1 )− P (un

1 , y
n
1 )|

(a)
=

∑

un
1 ,y

n
1

∣

∣

∣

∣

∑

i

(Q(ui|u
i−1
1 )− P (ui|u

i−1
1 ))

( i−1
∏

j=1

P (uj |u
j−1
1 )

)( N
∏

j=i+1

Q(uj |u
j−1
1 )

)

Q(yn1 |u
n
1 )

∣

∣

∣

∣

(b)

≤
∑

i∈I

∑

un
1 ,y

n
1

∣

∣Q(ui|u
i−1
1 )− P (ui|u

i−1
1 )

∣

∣

( i−1
∏

j=1

P (uj |u
j−1
1 )

)( N
∏

j=i+1

Q(uj |u
j−1
1 )

)

Q(yn1 |u
n
1 )

=
∑

i∈I

∑

ui−1
1

2P (ui−1
1 )‖QUi|U

i−1
1 =ui−1

1
− PUi|U

i−1
1 =ui−1

1
‖

(c)

≤
∑

i∈I

∑

ui−1
1

P (ui−1
1 )

√

(2 ln 2)D(PUi|U
i−1
1 =ui−1

1
‖QUi|U

i−1
1 =ui−1

1
)

(d)

≤
∑

i∈I

√

(2 ln 2)
∑

ui−1
1

P (ui−1
1 )D(PUi|U

i−1
1 =ui−1

1
‖QUi|U

i−1
1 =ui−1

1
) . (57)
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and its expectation over ΛIc is

EΛIc [Dn(ΛIc)]

=
1

n

∑

un
1 ,y

n
1

PY n
1
(yn1 )

(

∏

i∈I

PUi|U
i−1
1 ,Y n

1
(ui|u

i−1
1 , yn1 )

)

·

(

∏

i∈Ic

PUi|U
i−1
1

(ui|u
i−1
1 )

)

dn(yn1 , u
n
1Gn) . (63)

Then, for probability distribution QUn
1 ,Y n

1
defined as

QUn
1 ,Y n

1
(un

1 , y
n
1 ) ≡ PY n

1
(yn1 )

(

∏

i∈I

PUi|U
i−1
1 ,Y n

1
(ui|u

i−1
1 , yn1 )

)

·

(

∏

i∈Ic

PUi|U
i−1
1

(ui|u
i−1
1 )

)

, (64)

(63) is represented as

EΛIc [Dn(ΛIc)] =
1

n
EQUn

1 ,Y n
1
[d(Y n

1 , Un
1 Gn)] . (65)

Therefore we obtain

EΛIc [Dn(ΛIc)] ≤
1

n
EPUn

1 ,Y n
1
[dn(Y n

1 , GnU
n
1 )]

+
maxy,x d(y, x)

n
‖PUn

1 ,Y n
1
−QUn

1 ,Y n
1
‖

(66)

and the following lemma shows that the second term of the

RHS of (66) is O(2−nβ′
).

Lemma 2. For any β < 1/2 satisfying (18) and β′ < β,

‖PUn
1 ,Y n

1
−QUn

1 ,Y n
1
‖ = O(2−nβ′

) . (67)

Proof: By the same argument and notation as the proof

of Lemma 1, ‖PUn
1 ,Y n

1
−QUn

1 ,Y n
1
‖ is bounded as (68), where

the equalities and the inequality follow from

(a): (56) and Q(yn1 ) = P (yn1 ),
(b): Q(ui|u

i−1
1 , yn1 ) = P (ui|u

i−1
1 , yn1 ) for i ∈ I,

(c): QUi|U
i−1
1 ,Y n

1
= PUi|U

i−1
1

for i ∈ Ic.

(See below for Eq. (68).)

Furthermore it holds for all i ∈ Ic that

H(Ui|U
i−1
1 )−H(Ui|U

i−1
1 , Y n

1 )

(d)

≤ Z(Ui|U
i−1
1 )− (Z(Ui|U

i−1
1 , Y n

1 ))2

(e)

≤ min{Z(Ui|U
i−1
1 ), 1− (Z(Ui|U

i−1
1 , Y n

1 ))2}

(f)

≤ 2 · 2−nβ

(69)

from (d): Proposition 1, (e): Z(·|·) ∈ [0, 1] and (f): (18). We

obtain the lemma by combining (68) and (69).
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[3] E. Şaşoğlu, E. Telatar, and E. Arikan, “Polarization for arbitrary discrete
memoryless channels,” in Proceedings of IEEE Information Theory
Workshop (ITW2009), 2009, pp. 144–148.

[4] H. Cronie and S. Korada, “Lossless source coding with polar codes,” in
Proceedings of IEEE International Symposium on Information Theory
(ISIT10), 2010, pp. 904–908.

2‖PUn
1 ,Y n

1
−QUn

1 ,Y n
1
‖

(a)
=

∑

un
1 ,y

n
1

∣

∣

∣

∣

∑

i

(Q(ui|u
i−1
1 , yn1 )− P (ui|u

i−1
1 , yn1 ))P (yn1 )

( i−1
∏

j=1

P (uj |u
j−1
1 , yn1 )

)( N
∏

j=i+1

Q(uj |u
j−1
1 , yn1 )

)∣

∣

∣

∣

(b)

≤
∑

i∈Ic

∑

ui
1,y

n
1

∣

∣Q(ui|u
i−1
1 , yn1 )− P (ui|u

i−1
1 , yn1 )

∣

∣P (yn1 )

( i−1
∏

j=1

P (uj |u
j−1
1 , yn1 )

)

=
∑

i∈Ic

∑

ui−1
1 ,yn

1

2P (ui−1
1 , yn1 )‖QUi|Y n

1 =yn
1 , Ui−1

1 =ui−1
1

− PUi|Y n
1 =yn

1 , Ui−1
1 =ui−1

1
‖

≤
∑

i∈Ic

∑

ui−1
1 ,yn

1

P (ui−1
1 , yn1 )

√

(2 ln 2)D(PUi|Y n
1 =yn

1 , Ui−1
1 =ui−1

1
‖QUi|Y n

1 =yn
1 , Ui−1

1 =ui−1
1

)

≤
∑

i∈Ic

√

(2 ln 2)
∑

ui−1
1 ,yn

1

P (ui−1
1 , yn1 )D(PUi|Y n

1 =yn
1 , Ui−1

1 =ui−1
1

‖QUi|Y n
1 =yn

1 , Ui−1
1 =ui−1

1
)

=
∑

i∈Ic

√

(2 ln 2)D(PUi
‖QUi

|U i−1
1 , Y n

1 )

(c)
=

∑

i∈Ic

√

(2 ln 2)(H(Ui|U
i−1
1 )−H(Ui|U

i−1
1 , Y n

1 )) . (68)



10

[5] S. Korada and R. Urbanke, “Polar codes are optimal for lossy source
coding,” IEEE Trans. Inform. Theory, vol. 56, no. 4, pp. 1751–1768,
2010.

[6] S. B. Korada, “Polar codes for channel and source
coding,” Ph.D. dissertation, Lausanne, 2009. [Online]. Available:
http://library.epfl.ch/theses/?nr=4461

[7] R. G. Gallager, Information Theory and Reliable Communication. New
York: Wiley, 1968.

[8] E. Arikan, “Source polarization,” in Proceedings of IEEE International
Symposium on Information Theory (ISIT10), 2010, pp. 899–903.

[9] D. Sutter, J. M. Renes, F. Dupuis, and R. Renner, “Achieving the
capacity of any DMC using only polar codes,” in Proceedings of IEEE
Information Theory Workshop (ITW2012), Lausanne, Switzerland, Sep.
2012, pp. 114–118. [Online]. Available: http://arxiv.org/abs/1205.3756v2

[10] I. Tal and A. Vardy, “How to construct polar codes,” submitted
to IEEE Trans. Inform. Theory, 2011. [Online]. Available:
http://arxiv.org/abs/arXiv:1105.6164v2

[11] E. Arikan and E. Telatar, “On the rate of channel polarization,” in
Proceedings of IEEE International Symposium on Information Theory
(ISIT09), 2009, pp. 1493–1495.

[12] G. P. McCormick, “Second order conditions for constrained minima,”
SIAM Journal on Applied Mathematics, vol. 15, pp. 641–652, 1967.

[13] E. Abbe and A. Barron, “Polar coding schemes for the AWGN channel,”
in Proceedings of IEEE International Symposium on Information Theory
(ISIT11), 2011, pp. 194–198.
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